-
1
-
-
0032638628
-
Least squares support vector machine classifiers
-
J. A. K. Suykens and J. Vandewalle, Least squares support vector machine classifiers, Neural Process. Lett. 9(3) (1999) 293-300.
-
(1999)
Neural Process. Lett.
, vol.9
, Issue.3
, pp. 293-300
-
-
Suykens, J.A.K.1
Vandewalle, J.2
-
2
-
-
0037695279
-
-
World Scientific
-
J. A. K. Suykens, T. Van Gestel, J. De Brabanter, B. De Moor and J. Vandewalle, Least Squares Support Vector Machines (World Scientific, 2002).
-
(2002)
Least Squares Support Vector Machines
-
-
Suykens, J.A.K.1
Van Gestel, T.2
De Brabanter, J.3
De Moor, B.4
Vandewalle, J.5
-
3
-
-
78650681132
-
Model selection for least squares support vector regressions based on small-world strategy
-
W. Mao, G. Yan, L. Dong and D. Hu, Model selection for least squares support vector regressions based on small-world strategy, Exper. Syst. Appl. 38(4) (2011) 3227-3237.
-
(2011)
Exper. Syst. Appl.
, vol.38
, Issue.4
, pp. 3227-3237
-
-
Mao, W.1
Yan, G.2
Dong, L.3
Hu, D.4
-
4
-
-
40649116219
-
Leave-one-out cross-validation based model selection criteria for weighted LS-SVMs
-
G. C. Cawley, Leave-one-out cross-validation based model selection criteria for weighted LS-SVMs, Intl. Joint Conf. Neural Networ. (2006) 1661-1668.
-
(2006)
Intl. Joint Conf. Neural Networ.
, pp. 1661-1668
-
-
Cawley, G.C.1
-
5
-
-
0141639615
-
Efficient leave-one-out cross-validation of kernel Fisher discriminant classifiers
-
G. C. Cawley and N. L. C. Talbot, Efficient leave-one-out cross-validation of kernel Fisher discriminant classifiers, Pattern Recogn. 36(11) (2003) 2585-2592.
-
(2003)
Pattern Recogn.
, vol.36
, Issue.11
, pp. 2585-2592
-
-
Cawley, G.C.1
Talbot, N.L.C.2
-
6
-
-
0242288903
-
Benchmarking least squares support vector machine classifiers
-
T. V. Gestel, J. A. K. Suykens, B. Baesens, S. Viaene, J. Vanthienen, G. Dedene, B. D. Moor and J. Vandewalle, Benchmarking least squares support vector machine classifiers, Mach. Learn. 54(1) (2004) 5-32.
-
(2004)
Mach. Learn.
, vol.54
, Issue.1
, pp. 5-32
-
-
Gestel, T.V.1
Suykens, J.A.K.2
Baesens, B.3
Viaene, S.4
Vanthienen, J.5
Dedene, G.6
Moor, B.D.7
Vandewalle, J.8
-
7
-
-
34347245533
-
Localized generalization error model and its application to architecture selection for radial basis functions neural network
-
D. S. Yeung, W. W. Y. Ng, D. Wang, E. C. C. Tsang and X. Z. Wang, Localized generalization error model and its application to architecture selection for radial basis functions neural network, IEEE T. Neural Networ. 18(5) (2007) 1294-1305.
-
(2007)
IEEE T. Neural Networ.
, vol.18
, Issue.5
, pp. 1294-1305
-
-
Yeung, D.S.1
Ng, W.W.Y.2
Wang, D.3
Tsang, E.C.C.4
Wang, X.Z.5
-
8
-
-
69949159367
-
Localized generalization error based active learning for image annotation
-
B. Sun, W. W. Y. Ng, D. S. Yeung and J. Wang, Localized generalization error based active learning for image annotation, IEEE Proc. of Intl. Conf. on Sys., Man & Cyber. (2008) 60-65.
-
(2008)
IEEE Proc. of Intl. Conf. on Sys., Man & Cyber.
, pp. 60-65
-
-
Sun, B.1
Ng, W.W.Y.2
Yeung, D.S.3
Wang, J.4
-
10
-
-
80052923482
-
1-Norm least squares twin support vector machines
-
S. Gao, Q. Ye and N. Ye, 1-Norm least squares twin support vector machines, Neurocomputing 74 (2011) 3590-3597.
-
(2011)
Neurocomputing
, vol.74
, pp. 3590-3597
-
-
Gao, S.1
Ye, Q.2
Ye, N.3
-
11
-
-
73949113489
-
Sparse kernel learning with LASSO and Bayesian inference algorithm
-
J. Gao, P. W. Kwan and D. Shi, Sparse kernel learning with LASSO and Bayesian inference algorithm, Neural Networks 23(2) (2010) 257-264.
-
(2010)
Neural Networks
, vol.23
, Issue.2
, pp. 257-264
-
-
Gao, J.1
Kwan, P.W.2
Shi, D.3
-
12
-
-
28244453270
-
SMO-based pruning methods for sparse least squares support vector machines
-
X. Zeng and X. Chen, SMO-based pruning methods for sparse least squares support vector machines, IEEE T. Neural Networ. 16(6) (2005) 1541-1546.
-
(2005)
IEEE T. Neural Networ.
, vol.16
, Issue.6
, pp. 1541-1546
-
-
Zeng, X.1
Chen, X.2
-
13
-
-
78049527784
-
A weighted Lq adaptive least squares support vector machine classifiers-Robust and sparse approximation
-
J. Liu, J. Li, W. Xu and Y. Shi, A weighted Lq adaptive least squares support vector machine classifiers-Robust and sparse approximation, Exper. Syst. Appl. 38(3) (2011) 225-2259.
-
(2011)
Exper. Syst. Appl.
, vol.38
, Issue.3
, pp. 225-2259
-
-
Liu, J.1
Li, J.2
Xu, W.3
Shi, Y.4
-
14
-
-
38649088632
-
An orthogonal forward regression technique for sparse kernel density estimation
-
S. Chen, X. Hong and C. J. Harris, An orthogonal forward regression technique for sparse kernel density estimation, Neurocomputing 71(4) (2008) 931-943.
-
(2008)
Neurocomputing
, vol.71
, Issue.4
, pp. 931-943
-
-
Chen, S.1
Hong, X.2
Harris, C.J.3
-
15
-
-
70350217628
-
IP-LSSVM: A two-step sparse classifier
-
B. P. R. Carvalho and A. P. Braga, IP-LSSVM: A two-step sparse classifier, Pattern Recogn. Lett. 30(16) (2009) 1507-1515.
-
(2009)
Pattern Recogn. Lett.
, vol.30
, Issue.16
, pp. 1507-1515
-
-
Carvalho, B.P.R.1
Braga, A.P.2
-
16
-
-
79955482677
-
Evolution strategies based adaptive Lp LS-SVM
-
L. Wei, Z. Chen and J. Li, Evolution strategies based adaptive Lp LS-SVM, Inform. Sciences 181 (2011) 3000-3016.
-
(2011)
Inform. Sciences
, vol.181
, pp. 3000-3016
-
-
Wei, L.1
Chen, Z.2
Li, J.3
-
17
-
-
84855897694
-
Least squares support vector machines with tuning based on chaotic differential evolution approach applied to the identification of a thermal process
-
G. S. Santos, L. G. J. Luvizotto, V. C. Mariani and L. S. Coelho, Least squares support vector machines with tuning based on chaotic differential evolution approach applied to the identification of a thermal process, Exper. Syst. Appl. 39 (2012) 4805-4812.
-
(2012)
Exper. Syst. Appl.
, vol.39
, pp. 4805-4812
-
-
Santos, G.S.1
Luvizotto, L.G.J.2
Mariani, V.C.3
Coelho, L.S.4
-
18
-
-
56549111881
-
Novel LS-SVMs hyperparameter selection based on particle swarm optimization
-
X. C. Guo, J. H. Yang, C. G. Wu, C. Y. Wang and Y. C. Liang, Novel LS-SVMs hyperparameter selection based on particle swarm optimization, Neurocomputing 71 (2008) 3211-3215.
-
(2008)
Neurocomputing
, vol.71
, pp. 3211-3215
-
-
Guo, X.C.1
Yang, J.H.2
Wu, C.G.3
Wang, C.Y.4
Liang, Y.C.5
-
19
-
-
34247558132
-
Preventing over-fitting during model selection via bayesian regularisation of the hyper-parameters
-
G. C. Cawley and N. L. C. Talbot, Preventing over-fitting during model selection via bayesian regularisation of the hyper-parameters, J. Mach. Learn. Res. 8 (2007) 841-861.
-
(2007)
J. Mach. Learn. Res.
, vol.8
, pp. 841-861
-
-
Cawley, G.C.1
Talbot, N.L.C.2
-
20
-
-
84862027224
-
Efficient cross-validation for kernelized least-squares regression with sparse basis expansions
-
T. Pahikkala, H. Suominen and J. Boberg, Efficient cross-validation for kernelized least-squares regression with sparse basis expansions, Mach. Learn. 87 (2012) 381-407.
-
(2012)
Mach. Learn.
, vol.87
, pp. 381-407
-
-
Pahikkala, T.1
Suominen, H.2
Boberg, J.3
-
21
-
-
34247558132
-
Preventing over-fitting during model selection via bayesian regularisation of the hyper-parameters
-
G. C. Cawley and N. L. C. Talbot, Preventing over-fitting during model selection via bayesian regularisation of the hyper-parameters, J. Mach. Learn. Res. 8 (2007) 841-861.
-
(2007)
J. Mach. Learn. Res.
, vol.8
, pp. 841-861
-
-
Cawley, G.C.1
Talbot, N.L.C.2
-
22
-
-
49449083313
-
Feature selection using localized generalization error for supervised classification problems using RBFNN
-
W. W. Y. Ng, D. S. Yeung, M. Firth, E. C. C. Tsang and X. Z. Wang, Feature selection using localized generalization error for supervised classification problems using RBFNN, Pattern Recog. 41(12) (2008) 3706-3719.
-
(2008)
Pattern Recog.
, vol.41
, Issue.12
, pp. 3706-3719
-
-
Ng, W.W.Y.1
Yeung, D.S.2
Firth, M.3
Tsang, E.C.C.4
Wang, X.Z.5
|