-
1
-
-
79751536508
-
On learning and cross-validation with decomposed Nyström approximation of kernel matrix
-
10.1007/s11063-010-9159-4
-
A. Airola T. Pahikkala T. Salakoski 2011 On learning and cross-validation with decomposed Nyström approximation of kernel matrix Neural Processing Letters 33 1 17 30 10.1007/s11063-010-9159-4
-
(2011)
Neural Processing Letters
, vol.33
, Issue.1
, pp. 17-30
-
-
Airola, A.1
Pahikkala, T.2
Salakoski, T.3
-
2
-
-
34147111649
-
Fast cross-validation algorithms for least squares support vector machine and kernel ridge regression
-
1115.68125 10.1016/j.patcog.2006.12.015
-
S. An W. Liu S. Venkatesh 2007 Fast cross-validation algorithms for least squares support vector machine and kernel ridge regression Pattern Recognition 40 8 2154 2162 1115.68125 10.1016/j.patcog.2006.12.015
-
(2007)
Pattern Recognition
, vol.40
, Issue.8
, pp. 2154-2162
-
-
An, S.1
Liu, W.2
Venkatesh, S.3
-
3
-
-
80052866161
-
Incremental and decremental support vector machine learning
-
T. K. Leen T. G. Dietterich V. Tresp (eds). MIT Press Cambridge
-
Cauwenberghs, G., & Poggio, T. (2001). Incremental and decremental support vector machine learning. In T. K. Leen, T. G. Dietterich, & V. Tresp (Eds.), Advances in neural information processing systems (Vol. 13, pp. 409-415). Cambridge: MIT Press.
-
(2001)
Advances in Neural Information Processing Systems
, vol.13
, pp. 409-415
-
-
Cauwenberghs, G.1
Poggio, T.2
-
4
-
-
8444241860
-
Fast exact leave-one-out cross-validation of sparse least-squares support vector machines
-
1073.68072 10.1016/j.neunet.2004.07.002
-
G. C. Cawley N. L. C. Talbot 2004 Fast exact leave-one-out cross-validation of sparse least-squares support vector machines Neural Networks 17 10 1467 1475 1073.68072 10.1016/j.neunet.2004.07.002
-
(2004)
Neural Networks
, vol.17
, Issue.10
, pp. 1467-1475
-
-
Cawley, G.C.1
Talbot, N.L.C.2
-
6
-
-
0000259511
-
Approximate statistical tests for comparing supervised classification learning algorithms
-
10.1162/089976698300017197
-
T. G. Dietterich 1998 Approximate statistical tests for comparing supervised classification learning algorithms Neural Computation 10 7 1895 1923 10.1162/089976698300017197
-
(1998)
Neural Computation
, vol.10
, Issue.7
, pp. 1895-1923
-
-
Dietterich, T.G.1
-
8
-
-
84952149204
-
A statistical view of some chemometrics regression tools
-
0775.62288 10.2307/1269656
-
I. E. Frank J. H. Friedman 1993 A statistical view of some chemometrics regression tools Technometrics 35 2 109 135 0775.62288 10.2307/1269656
-
(1993)
Technometrics
, vol.35
, Issue.2
, pp. 109-135
-
-
Frank, I.E.1
Friedman, J.H.2
-
9
-
-
0004236492
-
-
2 Johns Hopkins University Press Baltimore 0733.65016
-
Golub, G. H., & Van Loan, C. (1989). Matrix computations (2nd ed.). Baltimore: Johns Hopkins University Press.
-
(1989)
Matrix Computations
-
-
Golub, G.H.1
Van Loan, C.2
-
11
-
-
0004151494
-
-
Cambridge University Press Cambridge 0576.15001
-
Horn, R., & Johnson, C. (1985). Matrix analysis. Cambridge: Cambridge University Press.
-
(1985)
Matrix Analysis
-
-
Horn, R.1
Johnson, C.2
-
12
-
-
70450206749
-
Efficient leave-m-out cross-validation of support vector regression by generalizing decremental algorithm
-
1185.68535 10.1007/s00354-008-0067-3
-
M. Karasuyama I. Takeuchi R. Nakano 2009 Efficient leave-m-out cross-validation of support vector regression by generalizing decremental algorithm New Generation Computing 27 307 318 1185.68535 10.1007/s00354-008- 0067-3
-
(2009)
New Generation Computing
, vol.27
, pp. 307-318
-
-
Karasuyama, M.1
Takeuchi, I.2
Nakano, R.3
-
13
-
-
85164392958
-
A study of cross-validation and bootstrap for accuracy estimation and model selection
-
C. Mellish (eds). Morgan Kaufmann San Mateo
-
Kohavi, R. (1995). A study of cross-validation and bootstrap for accuracy estimation and model selection. In C. Mellish (Ed.), Proceedings of the fourteenth international joint conference on artificial intelligence (Vol. 2, pp. 1137-1143). San Mateo: Morgan Kaufmann.
-
(1995)
Proceedings of the Fourteenth International Joint Conference on Artificial Intelligence
, vol.2
, pp. 1137-1143
-
-
Kohavi, R.1
-
14
-
-
84862286216
-
Sampling techniques for the Nyström method
-
D. van Dyk M. Welling (eds)
-
Kumar, S., Mohri, M., & Talwalkar, A. (2009). Sampling techniques for the Nyström method. In D. van Dyk & M. Welling (Eds.), JMLR workshop and conference proceedings: Vol. 5. Proceedings of the 12th international conference on artificial intelligence and statistics (pp. 304-311).
-
(2009)
Proceedings of the 12th International Conference on Artificial Intelligence and Statistics JMLR Workshop and Conference Proceedings
, vol.5
, pp. 304-311
-
-
Kumar, S.1
Mohri, M.2
Talwalkar, A.3
-
15
-
-
0042847140
-
Inference for the generalization error
-
1039.68104 10.1023/A:1024068626366
-
C. Nadeau Y. Bengio 2003 Inference for the generalization error Machine Learning 52 3 239 281 1039.68104 10.1023/A:1024068626366
-
(2003)
Machine Learning
, vol.52
, Issue.3
, pp. 239-281
-
-
Nadeau, C.1
Bengio, Y.2
-
16
-
-
84862520910
-
Fast n-fold cross-validation for regularized least-squares
-
T. Honkela T. Raiko J. Kortela H. Valpola (eds). Helsinki University of Technology Espoo
-
Pahikkala, T., Boberg, J., & Salakoski, T. (2006a). Fast n-fold cross-validation for regularized least-squares. In T. Honkela, T. Raiko, J. Kortela, & H. Valpola (Eds.), Proceedings of the ninth Scandinavian conference on artificial intelligence (SCAI 2006) (pp. 83-90). Espoo: Helsinki University of Technology.
-
(2006)
Proceedings of the Ninth Scandinavian Conference on Artificial Intelligence (SCAI 2006)
, pp. 83-90
-
-
Pahikkala, T.1
Boberg, J.2
Salakoski, T.3
-
17
-
-
56649101170
-
Graph kernels versus graph representations: A case study in parse ranking
-
T. Gärtner G. C. Garriga T. Meinl (eds)
-
Pahikkala, T., Tsivtsivadze, E., Boberg, J., & Salakoski, T. (2006b). Graph kernels versus graph representations: a case study in parse ranking. In T. Gärtner, G. C. Garriga, & T. Meinl (Eds.), Proceedings of the ECML/PKDD'06 workshop on mining and learning with graphs (pp. 181-188).
-
(2006)
Proceedings of the ECML/PKDD'06 Workshop on Mining and Learning with Graphs
, pp. 181-188
-
-
Pahikkala, T.1
Tsivtsivadze, E.2
Boberg, J.3
Salakoski, T.4
-
18
-
-
59349098809
-
Matrix representations, linear transformations, and kernels for disambiguation in natural language
-
10.1007/s10994-008-5082-6
-
T. Pahikkala S. Pyysalo J. Boberg J. Järvinen T. Salakoski 2009 Matrix representations, linear transformations, and kernels for disambiguation in natural language Machine Learning 74 2 133 158 10.1007/s10994-008-5082-6
-
(2009)
Machine Learning
, vol.74
, Issue.2
, pp. 133-158
-
-
Pahikkala, T.1
Pyysalo, S.2
Boberg, J.3
Järvinen, J.4
Salakoski, T.5
-
19
-
-
78650747993
-
Efficient hold-out for subset of regressors
-
M. Kolehmainen P. Toivanen B. Beliczynski (eds). Springer Berlin. 10.1007/978-3-642-04921-7-36
-
Pahikkala, T., Suominen, H., Boberg, J., & Salakoski, T. (2009b). Efficient hold-out for subset of regressors. In M. Kolehmainen, P. Toivanen, & B. Beliczynski (Eds.), Proceedings of the 9th international conference on adaptive and natural computing algorithms (pp. 350-359). Berlin: Springer.
-
(2009)
Proceedings of the 9th International Conference on Adaptive and Natural Computing Algorithms
, pp. 350-359
-
-
Pahikkala, T.1
Suominen, H.2
Boberg, J.3
Salakoski, T.4
-
20
-
-
60949112451
-
An efficient algorithm for learning to rank from preference graphs
-
10.1007/s10994-008-5097-z
-
T. Pahikkala E. Tsivtsivadze A. Airola J. Järvinen J. Boberg 2009 An efficient algorithm for learning to rank from preference graphs Machine Learning 75 1 129 165 10.1007/s10994-008-5097-z
-
(2009)
Machine Learning
, vol.75
, Issue.1
, pp. 129-165
-
-
Pahikkala, T.1
Tsivtsivadze, E.2
Airola, A.3
Järvinen, J.4
Boberg, J.5
-
21
-
-
27844500576
-
The differogram: Non-parametric noise variance estimation and its use for model selection
-
10.1016/j.neucom.2005.02.015
-
K. Pelckmans J. De Brabanter J. Suykens B. De Moor 2005 The differogram: non-parametric noise variance estimation and its use for model selection Neurocomputing 69 1-3 100 122 10.1016/j.neucom.2005.02.015
-
(2005)
Neurocomputing
, vol.69
, Issue.13
, pp. 100-122
-
-
Pelckmans, K.1
De Brabanter, J.2
Suykens, J.3
De Moor, B.4
-
22
-
-
33644990982
-
Additive regularization trade-off: Fusion of training and validation levels in kernel methods
-
10.1007/s10994-005-5315-x
-
K. Pelckmans J. Suykens B. De Moor 2006 Additive regularization trade-off: fusion of training and validation levels in kernel methods Machine Learning 62 217 252 10.1007/s10994-005-5315-x
-
(2006)
Machine Learning
, vol.62
, pp. 217-252
-
-
Pelckmans, K.1
Suykens, J.2
De Moor, B.3
-
23
-
-
0025490985
-
Networks for approximation and learning
-
10.1109/5.58326
-
T. Poggio F. Girosi 1990 Networks for approximation and learning Proceedings of the IEEE 78 9 1481 1497 10.1109/5.58326
-
(1990)
Proceedings of the IEEE
, vol.78
, Issue.9
, pp. 1481-1497
-
-
Poggio, T.1
Girosi, F.2
-
24
-
-
0242705996
-
The mathematics of learning: Dealing with data
-
1968413 1083.68100
-
T. Poggio S. Smale 2003 The mathematics of learning: Dealing with data Notices of the American Mathematical Society 50 5 537 544 1968413 1083.68100
-
(2003)
Notices of the American Mathematical Society
, vol.50
, Issue.5
, pp. 537-544
-
-
Poggio, T.1
Smale, S.2
-
28
-
-
44649153951
-
-
Massachusetts Institute of Technology, Cambridge, Massachusetts, USA.
-
Rifkin, R., & Lippert, R. (2007). Notes on regularized least squares (Technical Report MIT-CSAIL-TR-2007-025). Massachusetts Institute of Technology, Cambridge, Massachusetts, USA.
-
(2007)
Notes on Regularized Least Squares (Technical Report MIT-CSAIL-TR-2007- 025)
-
-
Rifkin, R.1
Lippert, R.2
-
29
-
-
9444250658
-
Regularized least-squares classification
-
J. Suykens G. Horvath S. Basu C. Micchelli J. Vandewalle (eds). IOS Press Amsterdam
-
Rifkin, R., Yeo, G., & Poggio, T. (2003). Regularized least-squares classification. In J. Suykens, G. Horvath, S. Basu, C. Micchelli, & J. Vandewalle (Eds.), NATO science series III: Computer and system sciences, Chap. 7: Vol. 190. Advances in learning theory: methods, model and applications (pp. 131-154). Amsterdam: IOS Press.
-
(2003)
Advances in Learning Theory: Methods, Model and Applications NATO Science Series III: Computer and System Sciences, Chap. 7
, vol.190
, pp. 131-154
-
-
Rifkin, R.1
Yeo, G.2
Poggio, T.3
-
30
-
-
0002619965
-
Ridge regression learning algorithm in dual variables
-
J. W. Shavlik (eds). Morgan Kaufmann San Mateo
-
Saunders, C., Gammerman, A., & Vovk, V. (1998). Ridge regression learning algorithm in dual variables. In J. W. Shavlik (Ed.), Proceedings of the fifteenth international conference on machine learning (pp. 515-521). San Mateo: Morgan Kaufmann.
-
(1998)
Proceedings of the Fifteenth International Conference on Machine Learning
, pp. 515-521
-
-
Saunders, C.1
Gammerman, A.2
Vovk, V.3
-
31
-
-
0034336808
-
Ten more years of error rate research
-
1107.62339 10.1111/j.1751-5823.2000.tb00332.x
-
R. A. Schiavo D. J. Hand 2000 Ten more years of error rate research International Statistical Review 68 3 295 310 1107.62339 10.1111/j.1751-5823. 2000.tb00332.x
-
(2000)
International Statistical Review
, vol.68
, Issue.3
, pp. 295-310
-
-
Schiavo, R.A.1
Hand, D.J.2
-
32
-
-
84865131152
-
A generalized representer theorem
-
D. Helmbold R. Williamson (eds). Springer Berlin
-
Schölkopf, B., Herbrich, R., & Smola, A. (2001). A generalized representer theorem. In D. Helmbold & R. Williamson (Eds.), Proceedings of the 14th annual conference on computational learning theory (pp. 416-426). Berlin: Springer.
-
(2001)
Proceedings of the 14th Annual Conference on Computational Learning Theory
, pp. 416-426
-
-
Schölkopf, B.1
Herbrich, R.2
Smola, A.3
-
34
-
-
84899000575
-
Sparse greedy gaussian process regression
-
T. K. Leen T. G. Dietterich V. Tresp (eds). MIT Press Cambridge
-
Smola, A., & Bartlett, P. (2001). Sparse greedy gaussian process regression. In T. K. Leen, T. G. Dietterich, & V. Tresp (Eds.), Advances in neural information processing systems (Vol. 3, pp. 619-625). Cambridge: MIT Press.
-
(2001)
Advances in Neural Information Processing Systems
, vol.3
, pp. 619-625
-
-
Smola, A.1
Bartlett, P.2
-
35
-
-
0032638628
-
Least squares support vector machine classifiers
-
1721843 10.1023/A:1018628609742
-
J. Suykens J. Vandewalle 1999 Least squares support vector machine classifiers Neural Processing Letters 9 3 293 300 1721843 10.1023/A: 1018628609742
-
(1999)
Neural Processing Letters
, vol.9
, Issue.3
, pp. 293-300
-
-
Suykens, J.1
Vandewalle, J.2
-
37
-
-
0037695279
-
-
World Scientific Singapore 1017.93004 10.1142/9789812776655
-
Suykens, J., Van Gestel, T., De Brabanter, J., De Moor, B., & Vandewalle, J. (2002). Least squares support vector machines. Singapore: World Scientific.
-
(2002)
Least Squares Support Vector Machines
-
-
Suykens, J.1
Van Gestel, T.2
De Brabanter, J.3
De Moor, B.4
Vandewalle, J.5
-
39
-
-
0036643065
-
Kernel matching pursuit
-
0998.68120 10.1023/A:1013955821559
-
P. Vincent Y. Bengio 2002 Kernel matching pursuit Machine Learning 48 165 187 0998.68120 10.1023/A:1013955821559
-
(2002)
Machine Learning
, vol.48
, pp. 165-187
-
-
Vincent, P.1
Bengio, Y.2
-
41
-
-
84899010839
-
Using the Nyström method to speed up kernel machines
-
T. K. Leen T. G. Dietterich V. Tresp (eds). MIT Press Cambridge
-
Williams, C. K. I., & Seeger, M. (2001). Using the Nyström method to speed up kernel machines. In T. K. Leen, T. G. Dietterich, & V. Tresp (Eds.), Advances in neural information processing systems (Vol. 13, pp. 682-688). Cambridge: MIT Press.
-
(2001)
Advances in Neural Information Processing Systems
, vol.13
, pp. 682-688
-
-
Williams, C.K.I.1
Seeger, M.2
|