메뉴 건너뛰기




Volumn 51, Issue 3, 2004, Pages 385-463

Smoothed analysis of algorithms: Why the simplex algorithm usually takes polynomial time

Author keywords

Complexity; Perturbation; Simplex method; Smoothed analysis

Indexed keywords

AVERAGE-CASE ANALYSES; SIMPLEX METHOD; SMOOTHED ANALYSIS;

EID: 4243066295     PISSN: 00045411     EISSN: None     Source Type: Journal    
DOI: 10.1145/990308.990310     Document Type: Article
Times cited : (750)

References (45)
  • 2
    • 4243179728 scopus 로고
    • The expected number of pivots needed to solve parametric linear programs and the efficiency of the self-dual simplex method
    • University of California at Berkeley. May
    • ADLER, I. 1983. The expected number of pivots needed to solve parametric linear programs and the efficiency of the self-dual simplex method. Tech. Rep., University of California at Berkeley. May.
    • (1983) Tech. Rep.
    • Adler, I.1
  • 4
    • 0022145768 scopus 로고
    • A simplex algorithm whose average number of steps is bounded between two quadratic functions of the smaller dimension
    • ADLER, I., AND MEGIDDO, N. 1985. A simplex algorithm whose average number of steps is bounded between two quadratic functions of the smaller dimension. J. ACM 32, 4 (Oct.), 871-895.
    • (1985) J. ACM , vol.32 , Issue.4 OCT. , pp. 871-895
    • Adler, I.1    Megiddo, N.2
  • 5
    • 0347224130 scopus 로고    scopus 로고
    • Deformed products and maximal shadows of polytopes
    • B. Chazelle, J. Goodman, and R. Pollack, Eds. Number 223 in Contemporary Mathematics. American Mathematics Society
    • AMENTA, N., AND ZIEGLER, G. 1999. Deformed products and maximal shadows of polytopes. In Advances in Discrete and Computational Geometry, B. Chazelle, J. Goodman, and R. Pollack, Eds. Number 223 in Contemporary Mathematics. American Mathematics Society, 57-90.
    • (1999) Advances in Discrete and Computational Geometry , pp. 57-90
    • Amenta, N.1    Ziegler, G.2
  • 6
    • 0002995518 scopus 로고
    • Notes on Bland's pivoting rule
    • Math. Programming Study
    • AVIS, D., AND CHVÁTAL, V. 1978. Notes on Bland's pivoting rule. In Polyhedral Combinatorics, Math. Programming Study, vol. 8. 24-34.
    • (1978) Polyhedral Combinatorics , vol.8 , pp. 24-34
    • Avis, D.1    Chvátal, V.2
  • 7
    • 0003584714 scopus 로고
    • Integralgeometrie 2: Zu ergebnissen von M. W. Crofton
    • BLASCHKE, W. 1935, Integralgeometrie 2: Zu ergebnissen von M. W. Crofton. Bull. Math. Soc. Roumaine Sci. 37, 3-11.
    • (1935) Bull. Math. Soc. Roumaine Sci. , vol.37 , pp. 3-11
    • Blaschke, W.1
  • 8
    • 0001215301 scopus 로고
    • Coloring random and semi-random k-colorable graphs
    • BLUM, A., AND SPENCER, J. 1995. Coloring random and semi-random k-colorable graphs. J. Algorithms 19, 2, 204-234.
    • (1995) J. Algorithms , vol.19 , Issue.2 , pp. 204-234
    • Blum, A.1    Spencer, J.2
  • 11
    • 0001326391 scopus 로고
    • Some applications of the rank revealing QR factorization
    • CHAN, T. F., AND HANSEN, P. C. 1992. Some applications of the rank revealing QR factorization. SIAM J. Sci. Stat. Comput. 13, 3 (May), 727-741.
    • (1992) SIAM J. Sci. Stat. Comput. , vol.13 , Issue.3 MAY , pp. 727-741
    • Chan, T.F.1    Hansen, P.C.2
  • 12
    • 0001900752 scopus 로고
    • Maximization of linear function of variables subject to linear inequalities
    • T. C. Koopmans, Ed.
    • DANTZIG, G. B. 1951. Maximization of linear function of variables subject to linear inequalities. In Activity Analysis of Production and Allocation, T. C. Koopmans, Ed. 339-347.
    • (1951) Activity Analysis of Production and Allocation , pp. 339-347
    • Dantzig, G.B.1
  • 13
    • 0003564271 scopus 로고
    • Eigenvalue roulette and random test matrices
    • M. S. Moonen, G. H. Golub, and B. L. R. D. Moor, Eds. NATO ASI Series
    • EDELMAN, A. 1992. Eigenvalue roulette and random test matrices. In Linear Algebra for Large Scale and Real-Time Applications, M. S. Moonen, G. H. Golub, and B. L. R. D. Moor, Eds. NATO ASI Series. 365-368.
    • (1992) Linear Algebra for Large Scale and Real-time Applications , pp. 365-368
    • Edelman, A.1
  • 14
    • 0000788596 scopus 로고
    • The convex hull of a random set of points
    • EFRON, B. 1965. The convex hull of a random set of points. Biometrika 52, 3/4, 331-343.
    • (1965) Biometrika , vol.52 , Issue.3-4 , pp. 331-343
    • Efron, B.1
  • 15
    • 0032313643 scopus 로고    scopus 로고
    • Heuristics for finding large independent sets, with applications to coloring semi-random graphs
    • (Palo Alto, Calif. Nov. 8-11). IEEE Computer Society Press, Los Alamitos, Calif.
    • FEIGE, U., AND KILIAN, J. 1998. Heuristics for finding large independent sets, with applications to coloring semi-random graphs. In 39th Annual Symposium on Foundations of Computer Science: Proceedings (Palo Alto, Calif. Nov. 8-11). IEEE Computer Society Press, Los Alamitos, Calif.
    • (1998) 39th Annual Symposium on Foundations of Computer Science: Proceedings
    • Feige, U.1    Kilian, J.2
  • 19
    • 0003881812 scopus 로고
    • Worst case complexity of the shadow vertex simplex algorithm
    • Columbia Univ., New York
    • GOLDFARB, D. 1983. Worst case complexity of the shadow vertex simplex algorithm. Tech. Rep. Columbia Univ., New York.
    • (1983) Tech. Rep.
    • Goldfarb, D.1
  • 20
    • 0018700313 scopus 로고
    • Worst case behaviour of the steepest edge simplex method
    • GOLDFARB, D., AND SIT, W. T. 1979. Worst case behaviour of the steepest edge simplex method. Disc. Appl. Math 1, 277-285.
    • (1979) Disc. Appl. Math , vol.1 , pp. 277-285
    • Goldfarb, D.1    Sit, W.T.2
  • 21
    • 0007009776 scopus 로고
    • The simplex algorithm is very good!: On the expected number of pivot steps and related properties of random linear programs
    • Columbia Univ., New York
    • HAIMOVICH, M. 1983. The simplex algorithm is very good!: On the expected number of pivot steps and related properties of random linear programs. Tech. Rep. Columbia Univ., New York.
    • (1983) Tech. Rep.
    • Haimovich, M.1
  • 22
    • 0003574558 scopus 로고
    • The simplex algorithm with the pivot rule of maximizing improvement criterion
    • JEROSLOW, R. G. 1973. The simplex algorithm with the pivot rule of maximizing improvement criterion. Disc. Math. 4, 367-377.
    • (1973) Disc. Math. , vol.4 , pp. 367-377
    • Jeroslow, R.G.1
  • 24
    • 84967739006 scopus 로고
    • A quasi-polynomial bound for the diameter of graphs of polyhedra
    • KALAI, G., AND KLEITMAN, D. J. 1992. A quasi-polynomial bound for the diameter of graphs of polyhedra. Bull. Amer. Math. Soc. 26, 315-316.
    • (1992) Bull. Amer. Math. Soc. , vol.26 , pp. 315-316
    • Kalai, G.1    Kleitman, D.J.2
  • 25
    • 51249181779 scopus 로고
    • A new polynomial time algorithm for linear programming
    • KARMARKAR, N. 1984. A new polynomial time algorithm for linear programming. Combinatorica 4, 373-395.
    • (1984) Combinatorica , vol.4 , pp. 373-395
    • Karmarkar, N.1
  • 26
    • 0000564361 scopus 로고
    • A polynomial algorithm in linear programming
    • KHACHIYAN, L. G. 1979. A polynomial algorithm in linear programming. Doklady Akademia Nauk SSSR, 1093-1096.
    • (1979) Doklady Akademia Nauk SSSR , pp. 1093-1096
    • Khachiyan, L.G.1
  • 27
    • 0001849163 scopus 로고
    • How good is the simplex algorithm?
    • Shisha, O., Ed. Academic Press, Orlando, Fla.
    • KLEE, V., AND MINTY, G. J. 1972. How good is the simplex algorithm? In Inequalities - III, Shisha, O., Ed. Academic Press, Orlando, Fla., 159-175.
    • (1972) Inequalities - III , pp. 159-175
    • Klee, V.1    Minty, G.J.2
  • 28
    • 1542500714 scopus 로고    scopus 로고
    • A subexponential bound for linear programming
    • MATOUŠEK, J., SHARIR, M., AND WELZL, E. 1996. A subexponential bound for linear programming. Algorithmica 16, 4/5 (Oct./Nov.), 498-516.
    • (1996) Algorithmica , vol.16 , Issue.4-5 OCT.-NOV. , pp. 498-516
    • Matoušek, J.1    Sharir, M.2    Welzl, E.3
  • 29
    • 0022733989 scopus 로고
    • Improved asymptotic analysis of the average number of steps performed by the self-dual simplex algorithm
    • MEGIDDO, N. 1986. Improved asymptotic analysis of the average number of steps performed by the self-dual simplex algorithm. Math. Prog. 35, 2, 140-172.
    • (1986) Math. Prog. , vol.35 , Issue.2 , pp. 140-172
    • Megiddo, N.1
  • 30
    • 0001178214 scopus 로고
    • Isotropic random simplices
    • MILES, R. E. 1971. Isotropic random simplices. Adv. Appl. Prob. 3, 353-382.
    • (1971) Adv. Appl. Prob. , vol.3 , pp. 353-382
    • Miles, R.E.1
  • 31
    • 0000649264 scopus 로고
    • Computational complexity of parametric linear programming
    • MURTY, K. G. 1980. Computational complexity of parametric linear programming. Math. Prog. 19, 213-219.
    • (1980) Math. Prog. , vol.19 , pp. 213-219
    • Murty, K.G.1
  • 32
    • 0028426653 scopus 로고
    • Some perturbation theory for linear programming
    • RENEGAR, J. 1994. Some perturbation theory for linear programming. Math. Prog. Ser. A. 65, 1, 73-91.
    • (1994) Math. Prog. Ser. A , vol.65 , Issue.1 , pp. 73-91
    • Renegar, J.1
  • 33
    • 0000208672 scopus 로고
    • Incorporating condition measures into the complexity theory of linear programming
    • RENEGAR, J. 1995a. Incorporating condition measures into the complexity theory of linear programming. SIAM J. Optim. 5, 3, 506-524.
    • (1995) SIAM J. Optim. , vol.5 , Issue.3 , pp. 506-524
    • Renegar, J.1
  • 34
    • 0029195774 scopus 로고
    • Linear programming, complexity theory and elementary functional analysis
    • RENEGAR, J. 1995b. Linear programming, complexity theory and elementary functional analysis. Math. Prog. Ser. A. 70, 3, 279-351.
    • (1995) Math. Prog. Ser. A , vol.70 , Issue.3 , pp. 279-351
    • Renegar, J.1
  • 35
    • 0001888582 scopus 로고
    • Uber die convexe hulle von is zufallig gewahlten punkten, I
    • RENYI, A., AND SULANKE, R. 1963. Uber die convexe hulle von is zufallig gewahlten punkten, I. Z. Whar. 2, 75-84.
    • (1963) Z. Whar. , vol.2 , pp. 75-84
    • Renyi, A.1    Sulanke, R.2
  • 36
    • 4243406573 scopus 로고
    • Uber die convexe hulle von is zufallig gewahlten punkten, II
    • RENYI, A., AND SULANKE, R. 1964. Uber die convexe hulle von is zufallig gewahlten punkten, II. Z. Whar. 3, 138-148.
    • (1964) Z. Whar. , vol.3 , pp. 138-148
    • Renyi, A.1    Sulanke, R.2
  • 37
    • 0003499866 scopus 로고
    • Encyclopedia of Mathematics and its Applications. Addison-Wesley, Reading, Mass
    • SANTALO, L. A. 1976. Integral Geometry and Geometric Probability. Encyclopedia of Mathematics and its Applications. Addison-Wesley, Reading, Mass.
    • (1976) Integral Geometry and Geometric Probability
    • Santalo, L.A.1
  • 38
    • 0021469810 scopus 로고
    • Generating quasi-random sequences from semi-random sources
    • SANTHA, M., AND VAZIRANI, U. 1986. Generating quasi-random sequences from semi-random sources. J. Comput. System Sciences 33, 75-87.
    • (1986) J. Comput. System Sciences , vol.33 , pp. 75-87
    • Santha, M.1    Vazirani, U.2
  • 40
    • 0020881843 scopus 로고
    • On the average number of steps in the simplex method of linear programming
    • SMALE, S. 1983. On the average number of steps in the simplex method of linear programming. Math. Prog. 27, 241-262.
    • (1983) Math. Prog. , vol.27 , pp. 241-262
    • Smale, S.1
  • 41
    • 0022739464 scopus 로고
    • Polynomial expected behavior of a pivoting algorithm for linear complementarity and linear programming problems
    • TODD, M. 1986. Polynomial expected behavior of a pivoting algorithm for linear complementarity and linear programming problems. Math. Prog. 35, 173-192.
    • (1986) Math. Prog. , vol.35 , pp. 173-192
    • Todd, M.1
  • 42
    • 0010786679 scopus 로고
    • Probabilistic models for linear programming
    • TODD, M. J. 1991. Probabilistic models for linear programming. Math. Oper. Res. 16, 4, 671-693.
    • (1991) Math. Oper. Res. , vol.16 , Issue.4 , pp. 671-693
    • Todd, M.J.1
  • 43
    • 0003079802 scopus 로고    scopus 로고
    • Characterizations, bounds, and probabilistic analysis of two complexity measures for linear programming problems
    • TODD, M. J., TUNÇEL, L., AND YE, Y. 2001. Characterizations, bounds, and probabilistic analysis of two complexity measures for linear programming problems. Math. Program., Ser. A 90, 59-69.
    • (2001) Math. Program., Ser. A , vol.90 , pp. 59-69
    • Todd, M.J.1    Tunçel, L.2    Ye, Y.3
  • 44
    • 0022714383 scopus 로고
    • On the probable performance of a heuristic for bandwidth minimization
    • TURNER, J. S. 1986. On the probable performance of a heuristic for bandwidth minimization. SIAM J. Comput. 15, 2, 561-580.
    • (1986) SIAM J. Comput. , vol.15 , Issue.2 , pp. 561-580
    • Turner, J.S.1
  • 45
    • 30244506467 scopus 로고    scopus 로고
    • A primal-dual interior-point method whose running time depends only on the constraint matrix
    • VAVASIS, S. A., AND YE, Y. 1996. A primal-dual interior-point method whose running time depends only on the constraint matrix. Math. Program. 74, 79-120.
    • (1996) Math. Program. , vol.74 , pp. 79-120
    • Vavasis, S.A.1    Ye, Y.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.