-
1
-
-
7444220645
-
Electric field in atomically thin carbon films
-
DOI 10.1126/science.1102896
-
Novoselov, K. S. et al. Electric field effect in atomically thin carbon films. Science 306, 666-669 (2004). (Pubitemid 39440910)
-
(2004)
Science
, vol.306
, Issue.5696
, pp. 666-669
-
-
Novoselov, K.S.1
Geim, A.K.2
Morozov, S.V.3
Jiang, D.4
Zhang, Y.5
Dubonos, S.V.6
Grigorieva, I.V.7
Firsov, A.A.8
-
3
-
-
23044442056
-
Two-dimensional atomic crystals
-
DOI 10.1073/pnas.0502848102
-
Novoselov, K. S. et al. Two-dimensional atomic crystals. Proc. Natl Acad. Sci. USA 102, 10451-10453 (2005). (Pubitemid 41061574)
-
(2005)
Proceedings of the National Academy of Sciences of the United States of America
, vol.102
, Issue.30
, pp. 10451-10453
-
-
Novoselov, K.S.1
Jiang, D.2
Schedin, F.3
Booth, T.J.4
Khotkevich, V.V.5
Morozov, S.V.6
Geim, A.K.7
-
4
-
-
65249133533
-
Narrow graphene nanoribbons from carbon nanotubes
-
Jiao, L., Zhang, L., Wang, X., Diankov, G. & Dai, H. Narrow graphene nanoribbons from carbon nanotubes. Nature 458, 877-880 (2009).
-
(2009)
Nature
, vol.458
, pp. 877-880
-
-
Jiao, L.1
Zhang, L.2
Wang, X.3
Diankov, G.4
Dai, H.5
-
5
-
-
78650136926
-
"White graphenes": Boron nitride nanoribbons via boron nitride nanotube unwrapping
-
Zeng, H. et al. "White graphenes": boron nitride nanoribbons via boron nitride nanotube unwrapping. Nano. Lett. 10, 5049-5055 (2010).
-
(2010)
Nano. Lett.
, vol.10
, pp. 5049-5055
-
-
Zeng, H.1
-
6
-
-
34547334459
-
Energy band-gap engineering of graphene nanoribbons
-
Han, M. Y., Ö zyilmaz, B., Zhang, Y. & Kim, P. Energy band-gap engineering of graphene nanoribbons. Phys. Rev. Lett. 98, 206805 (2007).
-
(2007)
Phys. Rev. Lett.
, vol.98
, pp. 206805
-
-
Han, M.Y.1
Özyilmaz, B.2
Zhang, Y.3
Kim, P.4
-
7
-
-
46749150363
-
Tailoring the atomic structure of graphene nanoribbons by scanning tunnelling microscope lithography
-
Tapaszto, L., Dobrik, G., Lambin, P. & Biro, L. P. Tailoring the atomic structure of graphene nanoribbons by scanning tunnelling microscope lithography. Nat. Nanotech. 3, 397-401 (2008).
-
(2008)
Nat. Nanotech.
, vol.3
, pp. 397-401
-
-
Tapaszto, L.1
Dobrik, G.2
Lambin, P.3
Biro, L.P.4
-
8
-
-
77954904482
-
Atomically precise bottom-up fabrication of graphene nanoribbons
-
Cai, J. et al. Atomically precise bottom-up fabrication of graphene nanoribbons. Nature 466, 470-473 (2010).
-
(2010)
Nature
, vol.466
, pp. 470-473
-
-
Cai, J.1
-
9
-
-
0000356426
-
Optical absorption and dispersion in molybdenum disulphide
-
Evans, B. L. & Young, P. A. Optical absorption and dispersion in molybdenum disulphide. Proc. R. Soc. A 284, 402-422 (1965).
-
(1965)
Proc. R. Soc. A
, vol.284
, pp. 402-422
-
-
Evans, B.L.1
Young, P.A.2
-
10
-
-
44949200319
-
2 as cocatalyst under visible light irradiation
-
DOI 10.1021/ja8007825
-
2 as cocatalyst under visible light irradiation. J. Am. Chem. Soc. 130, 7176-7177 (2008). (Pubitemid 351813181)
-
(2008)
Journal of the American Chemical Society
, vol.130
, Issue.23
, pp. 7176-7177
-
-
Zong, X.1
Yan, H.2
Wu, G.3
Ma, G.4
Wen, F.5
Wang, L.6
Li, C.7
-
14
-
-
77957322380
-
2 inorganic nanoribbons encapsulated in quasi-1D carbon nanotubes
-
2 inorganic nanoribbons encapsulated in quasi-1D carbon nanotubes. J. Am. Chem. Soc. 132, 13840-13847 (2010).
-
(2010)
J. Am. Chem. Soc.
, vol.132
, pp. 13840-13847
-
-
Wang, Z.1
-
15
-
-
84863941695
-
Two-dimensional transition metal dichalcogenides under electron irradiation: Defect production and doping
-
Komsa, H.-P. et al. Two-dimensional transition metal dichalcogenides under electron irradiation: defect production and doping. Phys. Rev. Lett. 109, 035503 (2012).
-
(2012)
Phys. Rev. Lett.
, vol.109
, pp. 035503
-
-
Komsa, H.-P.1
-
17
-
-
84877728747
-
-
Accessed 19 March
-
http://eetimes.com/electronics-news/4088140/IMFT-25-nm-MLC-NAND- technology-scaling-barriers-broken. Accessed 19 March (2013).
-
(2013)
-
-
-
18
-
-
84877762207
-
-
ITRS reports and ordering information Accessed 19 March
-
ITRS reports and ordering information http://www.itrs.net/reports. htmlAccessed 19 March (2013).
-
(2013)
-
-
-
19
-
-
58849129737
-
2 carbon: Crystalline graphene nanoribbons
-
2 carbon: crystalline graphene nanoribbons. Nano. Lett. 8, 2273-2278 (2008).
-
(2008)
Nano. Lett.
, vol.8
, pp. 2273-2278
-
-
Campos-Delgado, J.1
-
20
-
-
40049093097
-
Chemically derived, ultrasmooth graphene nanoribbon semiconductors
-
DOI 10.1126/science.1150878
-
Li, X., Wang, X., Zhang, L., Lee, S. & Dai, H. Chemically derived, ultrasmooth graphene nanoribbon semiconductors. Science 319, 1229-1232 (2008). (Pubitemid 351323015)
-
(2008)
Science
, vol.319
, Issue.5867
, pp. 1229-1232
-
-
Li, X.1
Wang, X.2
Zhang, L.3
Lee, S.4
Dai, H.5
-
21
-
-
44149119344
-
Room-temperature all-semiconducting sub-10-nm graphene nanoribbon field-effect transistors
-
Wang, X. et al. Room-temperature all-semiconducting sub-10-nm graphene nanoribbon field-effect transistors. Phys. Rev. Lett. 100, 206803 (2008).
-
(2008)
Phys. Rev. Lett.
, vol.100
, pp. 206803
-
-
Wang, X.1
-
22
-
-
77954905132
-
Etching and narrowing of graphene from the edges
-
Wang, X. & Dai, H. Etching and narrowing of graphene from the edges. Nat. Chem. 2, 661-665 (2010).
-
(2010)
Nat. Chem.
, vol.2
, pp. 661-665
-
-
Wang, X.1
Dai, H.2
-
23
-
-
80052561926
-
Graphene nanoribbons with smooth edges behave as quantum wires
-
Wang, X. et al. Graphene nanoribbons with smooth edges behave as quantum wires. Nat. Nanotech. 6, 563-567 (2011).
-
(2011)
Nat. Nanotech.
, vol.6
, pp. 563-567
-
-
Wang, X.1
-
26
-
-
2442537377
-
Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set
-
Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169 (1996).
-
(1996)
Phys. Rev. B
, vol.54
, pp. 11169
-
-
Kresse, G.1
Furthmüller, J.2
-
27
-
-
12844286241
-
Ab initio molecular dynamics for liquid metals
-
Kresse, G. & Hafner, J. Ab initio molecular dynamics for liquid metals. Phys. Rev. B 47, 558 (1993).
-
(1993)
Phys. Rev. B
, vol.47
, pp. 558
-
-
Kresse, G.1
Hafner, J.2
-
28
-
-
25744460922
-
Projector augmented-wave method
-
Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 50, 17953-17979 (1994).
-
(1994)
Phys. Rev. B
, vol.50
, pp. 17953-17979
-
-
Blöchl, P.E.1
-
29
-
-
0011236321
-
From ultrasoft pseudopotentials to the projector augmented-wave method
-
Kresse, G. & Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758-1775 (1999).
-
(1999)
Phys. Rev. B
, vol.59
, pp. 1758-1775
-
-
Kresse, G.1
Joubert, D.2
-
30
-
-
4243943295
-
Generalized gradient approximation made simple
-
Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865-3868 (1996). (Pubitemid 126631804)
-
(1996)
Physical Review Letters
, vol.77
, Issue.18
, pp. 3865-3868
-
-
Perdew, J.P.1
Burke, K.2
Ernzerhof, M.3
-
31
-
-
0037799714
-
Hybrid functionals based on a screened coulomb potential
-
Jochen, H., Gustavo, E. S. & Matthias, E. Hybrid functionals based on a screened coulomb potential. J. Chem. Phys. 118, 8207-8215 (2003).
-
(2003)
J. Chem. Phys.
, vol.118
, pp. 8207-8215
-
-
Jochen, H.1
Gustavo, E.S.2
Matthias, E.3
-
32
-
-
1242329035
-
Improved tangent estimate in the nudged elastic band method for finding minimum energy paths and saddle points
-
Graeme, H. & Hannes, J. Improved tangent estimate in the nudged elastic band method for finding minimum energy paths and saddle points. J. Chem. Phys. 113, 9978-9985 (2000).
-
(2000)
J. Chem. Phys.
, vol.113
, pp. 9978-9985
-
-
Graeme, H.1
Hannes, J.2
|