-
2
-
-
55149088329
-
Convex multitask feature learning
-
Argyriou, A., Evgeniou, T., and Pontil, M. (2008). Convex multitask feature learning. Machine Learning, 73(3):243-272.
-
(2008)
Machine Learning
, vol.73
, Issue.3
, pp. 243-272
-
-
Argyriou, A.1
Evgeniou, T.2
Pontil, M.3
-
3
-
-
0346238931
-
Task clustering and gating for Bayesian multitask learning
-
Bakker, B. and Heskes, T. (2003). Task clustering and gating for Bayesian multitask learning. Journal of Machine Learning Research, 4:83-99.
-
(2003)
Journal of Machine Learning Research
, vol.4
, pp. 83-99
-
-
Bakker, B.1
Heskes, T.2
-
4
-
-
0031187873
-
A Bayesian/information theoretic model of learning to learn via multiple task sampling
-
Baxter, J. (1997). A Bayesian/information theoretic model of learning to learn via multiple task sampling. Machine Learning, 28(1):7-39.
-
(1997)
Machine Learning
, vol.28
, Issue.1
, pp. 7-39
-
-
Baxter, J.1
-
5
-
-
85161977902
-
Multi-task Gaussian process prediction
-
Bonilla, E., Chai, K. M. A., and Williams, C. (2008). Multi-task Gaussian process prediction. In Advances in Neural Information Processing Systems 20, pages 153-160.
-
(2008)
Advances in Neural Information Processing Systems
, vol.20
, pp. 153-160
-
-
Bonilla, E.1
Chai, K.M.A.2
Williams, C.3
-
6
-
-
0031189914
-
Multitask learning
-
Caruana, R. (1997). Multitask learning. Machine Learning, 28(1):41-75.
-
(1997)
Machine Learning
, vol.28
, Issue.1
, pp. 41-75
-
-
Caruana, R.1
-
7
-
-
0002629270
-
Maximum likelihood from incomplete data via the em algorithm
-
Dempster, A. P., Laird, N. M., and Rubin, D. B. (1977). Maximum likelihood from incomplete data via the EM algorithm.Journal of the Royal Statistical Society. Series B (Methodological), 39(1):1-38.
-
(1977)
Journal of the Royal Statistical Society. Series B (Methodological)
, vol.39
, Issue.1
, pp. 1-38
-
-
Dempster, A.P.1
Laird, N.M.2
Rubin, D.B.3
-
8
-
-
67649946286
-
-
Chapman & Hall, 2nd edition
-
Gelman, A., Carlin, J. B., Stern, H. S., and Rubin, D. B. (2003). Bayesian Data Analysis. Chapman & Hall, 2nd edition.
-
(2003)
Bayesian Data Analysis.
-
-
Gelman, A.1
Carlin, J.B.2
Stern, H.S.3
Rubin, D.B.4
-
9
-
-
84864063983
-
A kernel method for the two-sampleproblem
-
Gretton, A., Borgwardt, K. M., Rasch, M., Schölkopf, B., and Smola, A. J. (2007). A kernel method for the two-sampleproblem. In NIPS 19.
-
(2007)
NIPS
, vol.19
-
-
Gretton, A.1
Borgwardt, K.M.2
Rasch, M.3
Schölkopf, B.4
Smola, A.J.5
-
11
-
-
84858783652
-
Clustered multi-task learning: A convex formulation
-
Jacob, L., Bach, F., and Vert, J.-P. (2009). Clustered multi-task learning: a convex formulation. In Advances in Neural Information Processing Systems 21, pages 745-752.
-
(2009)
Advances in Neural Information Processing Systems
, vol.21
, pp. 745-752
-
-
Jacob, L.1
Bach, F.2
Vert, J.-P.3
-
13
-
-
0343244538
-
General bounds on Bayes errors for regression with Gaussian processes
-
Opper, M. and Vivarelli, F. (1998). General bounds on Bayes errors for regression with Gaussian processes. In Advances in Neural Information Processing Systems 11, pages 302-308.
-
(1998)
Advances in Neural Information Processing Systems
, vol.11
, pp. 302-308
-
-
Opper, M.1
Vivarelli, F.2
-
15
-
-
25444448065
-
-
The MIT Press, Cambridge, MA, USA
-
Rasmussen, C. E. and Williams, C. K. I. (2006). Gaussian Processes for Machine Learning. The MIT Press, Cambridge, MA, USA.
-
(2006)
Gaussian Processes for Machine Learning
-
-
Rasmussen, C.E.1
Williams, C.K.I.2
-
16
-
-
84899006514
-
Learning Gaussian process kernels via hierarchical Bayes
-
Schwaighofer, A., Tresp, V., and Yu, K. (2005). Learning Gaussian process kernels via hierarchical Bayes. In Advances in Neural Information Processing Systems 17, pages 1209-1216.
-
(2005)
Advances in Neural Information Processing Systems
, vol.17
, pp. 1209-1216
-
-
Schwaighofer, A.1
Tresp, V.2
Yu, K.3
-
18
-
-
0039489976
-
Learning curves for Gaussian process regression: Approximations and bounds
-
Sollich, P. and Halees, A. (2002). Learning curves for Gaussian process regression: Approximations and bounds. Neural Computation, 14(6):1393-1428.
-
(2002)
Neural Computation
, vol.14
, Issue.6
, pp. 1393-1428
-
-
Sollich, P.1
Halees, A.2
-
20
-
-
85031124575
-
Is learning the n-th thing any easier than learning the first?
-
Denver, CO
-
Thrun, S. (1996). Is learning the n-th thing any easier than learning the first? In Advances in Neural Information Processing Systems 8, pages 640-646, Denver, CO.
-
(1996)
Advances in Neural Information Processing Systems
, vol.8
, pp. 640-646
-
-
Thrun, S.1
-
21
-
-
84898939890
-
On a connection between kernel PCA and metric multidimensional scaling
-
Williams, C. K. I. (2001). On a connection between kernel PCA and metric multidimensional scaling. In Advances in Neural Information Processing Systems 13, pages 675-681.
-
(2001)
Advances in Neural Information Processing Systems
, vol.13
, pp. 675-681
-
-
Williams, C.K.I.1
-
22
-
-
0033686947
-
Upper and lower bounds on the learning curve for Gaussian processes
-
Williams, C. K. I. and Vivarelli, F. (2000). Upper and lower bounds on the learning curve for Gaussian processes. Machine Learning, 40(1):77-102.
-
(2000)
Machine Learning
, vol.40
, Issue.1
, pp. 77-102
-
-
Williams, C.K.I.1
Vivarelli, F.2
-
23
-
-
33846487387
-
Multitask learning for classification with Dirichlet process priors
-
Xue, Y., Liao, X., Carin, L., and Krishnapuram, B. (2007). Multitask learning for classification with Dirichlet process priors. Journal of Machine Learning Research, 8:35-63.
-
(2007)
Journal of Machine Learning Research
, vol.8
, pp. 35-63
-
-
Xue, Y.1
Liao, X.2
Carin, L.3
Krishnapuram, B.4
-
25
-
-
34547975729
-
Robust multi-task learning with t-processes
-
Yu, S., Tresp, V., and Yu, K. (2007). Robust multi-task learning with t-processes. In Proceedings of the Twenty-Fourth International Conference on Machine Learning, pages 1103-1110.
-
(2007)
Proceedings of the Twenty-Fourth International Conference on Machine Learning
, pp. 1103-1110
-
-
Yu, S.1
Tresp, V.2
Yu, K.3
-
26
-
-
36348951585
-
Semiparametric regression using student t processes
-
Zhang, Z., Wu, G., and Chang, E. Y. (2007). Semiparametric regression using student t processes. IEEE Transactions on Neural Networks, 18(6):1572-1588.
-
(2007)
IEEE Transactions on Neural Networks
, vol.18
, Issue.6
, pp. 1572-1588
-
-
Zhang, Z.1
Wu, G.2
Chang, E.Y.3
-
27
-
-
85162059520
-
Predictive matrix-variate t models
-
Zhu, S., Yu, K., and Gong, Y. (2008). Predictive matrix-variate t models. In Advances in Neural Information Processing Systems 20, pages 1721-1728.
-
(2008)
Advances in Neural Information Processing Systems
, vol.20
, pp. 1721-1728
-
-
Zhu, S.1
Yu, K.2
Gong, Y.3
|