메뉴 건너뛰기




Volumn 23, Issue 3, 2012, Pages 534-540

Entropy-based incremental variational bayes learning of gaussian mixtures

Author keywords

Clustering; entropy estimation; mixture models; model order selection; variational Bayes methods

Indexed keywords

CLUSTERING; ENTROPY ESTIMATION; MIXTURE MODEL; MODEL-ORDER SELECTION; VARIATIONAL-BAYES METHOD;

EID: 84876936071     PISSN: 2162237X     EISSN: 21622388     Source Type: Journal    
DOI: 10.1109/TNNLS.2011.2177670     Document Type: Article
Times cited : (31)

References (25)
  • 1
  • 4
    • 0002629270 scopus 로고
    • Maximum likelihood estimation from incomplete data via the em algorithm
    • A. Dempster, N. Laird, and D. Rubin, "Maximum likelihood estimation from incomplete data via the EM algorithm," J. Royal Stat. Soc., vol. 39, no. 1, pp. 1-38, 1977.
    • (1977) J. Royal Stat. Soc , vol.39 , Issue.1 , pp. 1-38
    • Dempster, A.1    Laird, N.2    Rubin, D.3
  • 5
    • 0034320394 scopus 로고    scopus 로고
    • The Bayesian evidence scheme for regularizing probability-density estimating neural networks
    • D. Husmeier, "The Bayesian evidence scheme for regularizing probability-density estimating neural networks," Neural Comput., vol. 12, no. 11, pp. 2685-2717, 2000.
    • (2000) Neural Comput , vol.12 , Issue.11 , pp. 2685-2717
    • Husmeier, D.1
  • 7
    • 84898934543 scopus 로고    scopus 로고
    • Variational inference for Bayesian mixtures of factor analysers
    • Cambridge, MA: MIT Press
    • Z. Ghahramani and M. J. Beal, "Variational inference for Bayesian mixtures of factor analysers," in Advances in Neural Information Processing Systems 12. Cambridge, MA: MIT Press, 2000, pp. 449-455.
    • (2000) Advances in Neural Information Processing Systems , vol.12 , pp. 449-455
    • Ghahramani, Z.1    Beal, M.J.2
  • 8
    • 33746813525 scopus 로고    scopus 로고
    • Variational learning for Gaussian mixture models
    • Aug
    • N. Nasios and A. Bors, "Variational learning for Gaussian mixture models," IEEE Trans. Syst., Man, Cybern. Part B: Cybern., vol. 36, no. 4, pp. 849-862, Aug. 2006.
    • (2006) IEEE Trans. Syst., Man, Cybern. Part B: Cybern , vol.36 , Issue.4 , pp. 849-862
    • Nasios, N.1    Bors, A.2
  • 9
    • 35248864859 scopus 로고    scopus 로고
    • Blind source separation using variational expectation-maximization algorithm
    • N. Nasios and A. Bors, "Blind source separation using variational expectation-maximization algorithm," in Proc. Int. Conf. Comput. Anal. Images Patterns, vol. 2756. 2003, pp. 442-450.
    • (2003) Proc. Int. Conf. Comput. Anal. Images Patterns , vol.2756 , pp. 442-450
    • Nasios, N.1    Bors, A.2
  • 11
    • 34147127144 scopus 로고    scopus 로고
    • Unsupervised selection and estimation of finite mixture models
    • M. A. T. Figueiredo and A. K. Jain, "Unsupervised selection and estimation of finite mixture models," in Proc. Int. Conf. Pattern Recognit., 2000, pp. 87-90.
    • (2000) Proc. Int. Conf. Pattern Recognit , pp. 87-90
    • Figueiredo, M.A.T.1    Jain, A.K.2
  • 12
    • 0036522404 scopus 로고    scopus 로고
    • Unsupervised learning of finite mixture models
    • Mar
    • M. Figueiredo and A. Jain, "Unsupervised learning of finite mixture models," IEEE Trans. Pattern Anal. Mach. Intell., vol. 24, no. 3, pp. 381-399, Mar. 2002.
    • (2002) IEEE Trans. Pattern Anal. Mach. Intell , vol.24 , Issue.3 , pp. 381-399
    • Figueiredo, M.1    Jain, A.2
  • 13
    • 75549089343 scopus 로고    scopus 로고
    • Learning Gaussian mixture models with entropy-based criteria
    • Nov
    • A. Peñalver, F. Escolano, and J. M. Sáez, "Learning Gaussian mixture models with entropy-based criteria," IEEE Trans. Neural Netw., vol. 20, no. 11, pp. 1756-1772, Nov. 2009.
    • (2009) IEEE Trans. Neural Netw , vol.20 , Issue.11 , pp. 1756-1772
    • Peñalver, A.1    Escolano, F.2    Sáez, J.M.3
  • 15
    • 34248648503 scopus 로고    scopus 로고
    • Unsupervised learning of Gaussian mixtures based on variational component splitting
    • May
    • C. Constantinopoulos and A. Likas, "Unsupervised learning of Gaussian mixtures based on variational component splitting," IEEE Trans. Neural Netw., vol. 18, no. 3, pp. 745-755, May 2007.
    • (2007) IEEE Trans. Neural Netw , vol.18 , Issue.3 , pp. 745-755
    • Constantinopoulos, C.1    Likas, A.2
  • 16
    • 77958481189 scopus 로고    scopus 로고
    • Entropy-based variational scheme for fast Bayes learning of Gaussian mixtures
    • Stat. Pattern Recognit
    • A. Peñalver, F. Escolano, and B. Bonev, "Entropy-based variational scheme for fast Bayes learning of Gaussian mixtures," in Proc. Joint IAPR Int. Conf. Struct., Synt., Stat. Pattern Recognit., 2010, pp. 100-108.
    • (2010) Proc. Joint IAPR Int. Conf. Struct., Synt. , pp. 100-108
    • Peñalver, A.1    Escolano, F.2    Bonev, B.3
  • 17
    • 0003278032 scopus 로고    scopus 로고
    • Inferring parameters and structure of latent variable models by variational Bayes
    • H. Attias, "Inferring parameters and structure of latent variable models by variational Bayes," in Proc. Uncertain. Artif. Intell., 1999, pp. 21-30.
    • (1999) Proc. Uncertain. Artif. Intell , pp. 21-30
    • Attias, H.1
  • 19
    • 85026306460 scopus 로고    scopus 로고
    • Estimation of Rényi information divergence via pruned minimal spanning trees
    • Caesarea. Israel, Jun
    • A. Hero and O. J. J. Michel, "Estimation of Rényi information divergence via pruned minimal spanning trees," in Proc. IEEE Workshop Higher Order Stat., Caesarea. Israel, Jun. 1999, pp. 264-268.
    • (1999) Proc.IEEE Workshop Higher Order Stat. , pp. 264-268
    • Hero, A.1    Michel, O.J.J.2
  • 20
    • 54349103517 scopus 로고    scopus 로고
    • A class of Rényi information estimators for multi-dimensional densities
    • N. Leonenko and L. Pronzato, "A class of Rényi information estimators for multi-dimensional densities," Ann. Stat., vol. 36, no. 5, pp. 2153-2182, 2008.
    • (2008) Ann. Stat , vol.36 , Issue.5 , pp. 2153-2182
    • Leonenko, N.1    Pronzato, L.2
  • 21
    • 33747746017 scopus 로고
    • Minimal topology for a radial basis functions neural network for pattern classification
    • A. G. Bors and M. Gabbouj, "Minimal topology for a radial basis functions neural network for pattern classification," Digital Signal Process., vol. 4, no. 3, pp. 173-188, 1994.
    • (1994) Digital Signal Process , vol.4 , Issue.3 , pp. 173-188
    • Bors, A.G.1    Gabbouj, M.2
  • 22
    • 18244378520 scopus 로고    scopus 로고
    • On Bayesian analysis of mixtures with unknown number of components (with discussion)
    • S. Richardson and P. Green, "On Bayesian analysis of mixtures with unknown number of components (with discussion)," J. Royal Stat. Soc. B, vol. 59, no. 1, pp. 731-792, 1997.
    • (1997) J. Royal Stat. Soc. B , vol.59 , Issue.1 , pp. 731-792
    • Richardson, S.1    Green, P.2
  • 23
    • 4444233747 scopus 로고    scopus 로고
    • Learning a multivariate Gaussian mixture models with the reversible jump MCMC algorithm
    • Z. Zhang, K. Chan, Y. Wu, and C. Chen, "Learning a multivariate Gaussian mixture models with the reversible jump MCMC algorithm," Stat. Comput., vol. 14, no. 1, pp. 343-355, 2004.
    • (2004) Stat. Comput , vol.14 , Issue.1 , pp. 343-355
    • Zhang, Z.1    Chan, K.2    Wu, Y.3    Chen, C.4
  • 24
    • 33644514005 scopus 로고    scopus 로고
    • Multivariate mixtures of normals with unknown number of components
    • P. Dellaportas and I. Papageorgiou, "Multivariate mixtures of normals with unknown number of components," Stat. Comput., vol. 16, no. 1, pp. 57-68, 2006.
    • (2006) Stat. Comput , vol.16 , Issue.1 , pp. 57-68
    • Dellaportas, P.1    Papageorgiou, I.2
  • 25
    • 0003408496 scopus 로고    scopus 로고
    • Dept. Inf. Comput. Sci., Univ. California, Irvine [Online] Available
    • C. Blake and C. Merz. (1998). UCI Repository of Machine Learning Databases. Dept. Inf. Comput. Sci., Univ. California, Irvine [Online]. Available: http://archive.ics.uci.edu/ml/
    • (1998) UCI Repository of Machine Learning Databases
    • Blake, C.1    Merz, C.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.