메뉴 건너뛰기




Volumn 36, Issue 4, 2006, Pages 849-862

Variational learning for Gaussian mixture models

Author keywords

Bayesian inference; Expectation maximization algorithm; Gaussian mixtures; Maximum log likelihood estimation; Variational training

Indexed keywords

IMAGE SEGMENTATION; INFERENCE ENGINES; MATHEMATICAL MODELS; MAXIMUM LIKELIHOOD ESTIMATION; PARAMETER ESTIMATION; SIGNAL DETECTION; VARIATIONAL TECHNIQUES;

EID: 33746813525     PISSN: 10834419     EISSN: None     Source Type: Journal    
DOI: 10.1109/TSMCB.2006.872273     Document Type: Article
Times cited : (145)

References (46)
  • 3
    • 0021404166 scopus 로고
    • "Mixture densities, maximum likelihood and the EM algorithm"
    • Apr
    • R. A. Redner and H. F. Walker, "Mixture densities, maximum likelihood and the EM algorithm," SIAM Rev., vol. 26, no. 2, pp. 195-239, Apr. 1984.
    • (1984) SIAM Rev. , vol.26 , Issue.2 , pp. 195-239
    • Redner, R.A.1    Walker, H.F.2
  • 4
    • 33747746017 scopus 로고
    • "Minimal topology for a radial basis functions neural network for pattern classification"
    • Jul
    • A. G. Bors and M. Gabbouj, "Minimal topology for a radial basis functions neural network for pattern classification," Digit. Signal Process.: A Rev. J., vol. 4, no. 3, pp. 173-188, Jul. 1994.
    • (1994) Digit. Signal Process.: A Rev. J. , vol.4 , Issue.3 , pp. 173-188
    • Bors, A.G.1    Gabbouj, M.2
  • 5
    • 0001177599 scopus 로고    scopus 로고
    • "Median radial basis function neural network"
    • Nov
    • A. G. Bors and I. Pitas, "Median radial basis function neural network," IEEE Trans. Neural Netw., vol. 7, no. 6, pp. 1351-1364, Nov. 1996.
    • (1996) IEEE Trans. Neural Netw. , vol.7 , Issue.6 , pp. 1351-1364
    • Bors, A.G.1    Pitas, I.2
  • 6
    • 0030165570 scopus 로고    scopus 로고
    • "RBFN restoration of nonlinearly degraded images"
    • Jun
    • I. Cha and S. A. Kassam, "RBFN restoration of nonlinearly degraded images," IEEE Trans. Image Process., vol. 5, no. 6, pp. 964-975, Jun. 1996.
    • (1996) IEEE Trans. Image Process. , vol.5 , Issue.6 , pp. 964-975
    • Cha, I.1    Kassam, S.A.2
  • 7
    • 0034227415 scopus 로고    scopus 로고
    • "Estimation of elliptical basis function parameters by the EM algorithm with application to speaker verification"
    • Jul
    • M. W. Mak and S. Y. Kung, "Estimation of elliptical basis function parameters by the EM algorithm with application to speaker verification," IEEE Trans. Neural Netw., vol. 11, no. 4, pp. 961-969, Jul. 2000.
    • (2000) IEEE Trans. Neural Netw. , vol.11 , Issue.4 , pp. 961-969
    • Mak, M.W.1    Kung, S.Y.2
  • 8
    • 0037255446 scopus 로고    scopus 로고
    • "A new EM-based training algorithm for RBF networks"
    • Jan
    • M. Lazaro, I. Santamaria, and C. Pantaleon, "A new EM-based training algorithm for RBF networks," Neural Netw., vol. 16, no. 1, pp. 69-77, Jan. 2003.
    • (2003) Neural Netw. , vol.16 , Issue.1 , pp. 69-77
    • Lazaro, M.1    Santamaria, I.2    Pantaleon, C.3
  • 9
    • 0033345243 scopus 로고    scopus 로고
    • "Object classification in 3-D images using alpha-trimmed mean radial basis function network"
    • Dec
    • A. G. Bors and I. Pitas, "Object classification in 3-D images using alpha-trimmed mean radial basis function network," IEEE Trans. Image Process., vol. 8, no. 12, pp. 1730-1744, Dec. 1999.
    • (1999) IEEE Trans. Image Process. , vol.8 , Issue.12 , pp. 1730-1744
    • Bors, A.G.1    Pitas, I.2
  • 12
    • 0002629270 scopus 로고
    • "Maximum likelihood from incomplete data via EM algorithm"
    • A. P. Dempster, N. M. Laird, and D. B. Rubin, "Maximum likelihood from incomplete data via EM algorithm," J. R. Statist. Soc., B, vol. 39, no. 1, pp. 1-38, 1977.
    • (1977) J. R. Statist. Soc., B , vol.39 , Issue.1 , pp. 1-38
    • Dempster, A.P.1    Laird, N.M.2    Rubin, D.B.3
  • 14
    • 33746815916 scopus 로고    scopus 로고
    • "Image fusion using the expectation-maximization algorithm and a Gaussian mixture model"
    • in G. L. Foresti, C. S. Regazzoni, and P. Varshney, Eds. Norwell, MA: Kluwer
    • R. S. Blum and J. Yang, "Image fusion using the expectation-maximization algorithm and a Gaussian mixture model," in Multisensor Surveillance Systems: The Fusion Perspective, G. L. Foresti, C. S. Regazzoni, and P. Varshney, Eds. Norwell, MA: Kluwer, 2003, pp. 81-96.
    • (2003) Multisensor Surveillance Systems: The Fusion Perspective , pp. 81-96
    • Blum, R.S.1    Yang, J.2
  • 15
    • 0036522404 scopus 로고    scopus 로고
    • "Unsupervised learning of finite mixture models"
    • Mar
    • M. A. T. Figueiredo and A. K. Jain, "Unsupervised learning of finite mixture models," IEEE Trans. Pattern Anal. Mach. Intell., vol. 24, no. 3, pp. 381-396, Mar. 2002.
    • (2002) IEEE Trans. Pattern Anal. Mach. Intell. , vol.24 , Issue.3 , pp. 381-396
    • Figueiredo, M.A.T.1    Jain, A.K.2
  • 16
    • 0034264299 scopus 로고    scopus 로고
    • "SMEM algorithm for mixture models"
    • Sep
    • N. Ueda, R. Nakano, Z. Ghahramani, and G. E. Hinton, "SMEM algorithm for mixture models," Neural Comput., vol. 12, no. 9, pp. 2109-2118, Sep. 2000.
    • (2000) Neural Comput. , vol.12 , Issue.9 , pp. 2109-2118
    • Ueda, N.1    Nakano, R.2    Ghahramani, Z.3    Hinton, G.E.4
  • 17
    • 0038309400 scopus 로고    scopus 로고
    • "EM algorithms for Gaussian mixtures with split-and-merge operation"
    • Sep
    • Z. H. Zhang, C. B. Chen, J. Sun, and K. L. Chan, "EM algorithms for Gaussian mixtures with split-and-merge operation," Pattern Recognit., vol. 36, no. 9, pp. 1973-1983, Sep. 2003.
    • (2003) Pattern Recognit. , vol.36 , Issue.9 , pp. 1973-1983
    • Zhang, Z.H.1    Chen, C.B.2    Sun, J.3    Chan, K.L.4
  • 18
    • 0000935895 scopus 로고    scopus 로고
    • "An introduction to variational methods for graphical models"
    • in M. I. Jordan, Ed. Cambridge, MA: MIT Press
    • M. I. Jordan, Z. Ghahramani, T. S. Jaakkola, and L. K. Saul, "An introduction to variational methods for graphical models," in Learning in Graphical Models, M. I. Jordan, Ed. Cambridge, MA: MIT Press, 1999, pp. 105-161.
    • (1999) Learning in Graphical Models , pp. 105-161
    • Jordan, M.I.1    Ghahramani, Z.2    Jaakkola, T.S.3    Saul, L.K.4
  • 19
    • 0042685161 scopus 로고    scopus 로고
    • "Bayesian parameter estimation via variational methods"
    • Sep
    • T. S. Jaakkola and M. I. Jordan, "Bayesian parameter estimation via variational methods," Stat. Comput., vol. 10, no. 1, pp. 25-37, Sep. 2000.
    • (2000) Stat. Comput. , vol.10 , Issue.1 , pp. 25-37
    • Jaakkola, T.S.1    Jordan, M.I.2
  • 20
    • 0001837853 scopus 로고    scopus 로고
    • "Improving the mean field approximation via the use of mixture distributions"
    • in M. I. Jordan, Ed. Cambridge, MA: MIT Press
    • T. S. Jaakkola and M. I. Jordan, "Improving the mean field approximation via the use of mixture distributions," in Learning in Graphical Models, M. I. Jordan, Ed. Cambridge, MA: MIT Press, 1999, pp. 163-173.
    • (1999) Learning in Graphical Models , pp. 163-173
    • Jaakkola, T.S.1    Jordan, M.I.2
  • 22
    • 0034320394 scopus 로고    scopus 로고
    • "The Bayesian evidence scheme for regularizing probability-density estimating neural networks"
    • Nov
    • D. Husmeier, "The Bayesian evidence scheme for regularizing probability-density estimating neural networks," Neural Comput., vol. 12, no. 11, pp. 2685-2717, Nov. 2000.
    • (2000) Neural Comput. , vol.12 , Issue.11 , pp. 2685-2717
    • Husmeier, D.1
  • 23
    • 0041324801 scopus 로고    scopus 로고
    • "Variational Bayesian learning of ICA with missing data"
    • Aug
    • K. Chan, T.-W. Lee, and T. J. Sejnowski, "Variational Bayesian learning of ICA with missing data," Neural Comput., vol. 15, no. 8, pp. 1991-2011, Aug. 2003.
    • (2003) Neural Comput. , vol.15 , Issue.8 , pp. 1991-2011
    • Chan, K.1    Lee, T.-W.2    Sejnowski, T.J.3
  • 24
    • 0001341735 scopus 로고    scopus 로고
    • "Introduction to Monte Carlo methods"
    • in M. I. Jordan, Ed. Cambridge, MA: MIT Press
    • D. J. C. MacKay, "Introduction to Monte Carlo methods," in Learning in Graphical Models, M. I. Jordan, Ed. Cambridge, MA: MIT Press, 1999, pp. 175-204.
    • (1999) Learning in Graphical Models , pp. 175-204
    • MacKay, D.J.C.1
  • 25
    • 13844295342 scopus 로고    scopus 로고
    • "The variational Bayesian EM algorithm for incomplete data: With application to scoring graphical model structures"
    • in D. Heckerman, A. F. M. Smith, and M. West, Eds. London, U.K.: Oxford Univ. Press
    • M. J. Beal and Z. Ghahramani, "The variational Bayesian EM algorithm for incomplete data: With application to scoring graphical model structures," in Bayesian Statistics 7, D. Heckerman, A. F. M. Smith, and M. West, Eds. London, U.K.: Oxford Univ. Press, 2003, pp. 453-464.
    • (2003) Bayesian Statistics 7 , pp. 453-464
    • Beal, M.J.1    Ghahramani, Z.2
  • 26
    • 4043136951 scopus 로고    scopus 로고
    • "Variational Gaussian process classifiers"
    • Nov
    • M. N. Gibbs and D. J. C. MacKay, "Variational Gaussian process classifiers," IEEE Trans. Neural Netw., vol. 11, no. 6, pp. 1458-1464, Nov. 2000.
    • (2000) IEEE Trans. Neural Netw. , vol.11 , Issue.6 , pp. 1458-1464
    • Gibbs, M.N.1    MacKay, D.J.C.2
  • 27
    • 84898964031 scopus 로고    scopus 로고
    • "A variational Bayesian framework for graphical models"
    • in Cambridge, MA: MIT Press
    • H. Attias, "A variational Bayesian framework for graphical models," in Advances in Neural Information Processing Systems (NIPS), vol. 12. Cambridge, MA: MIT Press, 2000, pp. 209-215.
    • (2000) Advances in Neural Information Processing Systems (NIPS) , vol.12 , pp. 209-215
    • Attias, H.1
  • 28
    • 1842751687 scopus 로고    scopus 로고
    • "Expectation-propagation for the generative aspect model"
    • in Edmonton, AB, Canada, Aug. 1-4
    • T. Minka and J. Lafferty, "Expectation-propagation for the generative aspect model," in Proc. 18th Conf. Uncertainty Arti. Intell., Edmonton, AB, Canada, Aug. 1-4, 2002, pp. 352-359.
    • (2002) Proc. 18th Conf. Uncertainty Arti. Intell. , pp. 352-359
    • Minka, T.1    Lafferty, J.2
  • 29
    • 84899003086 scopus 로고    scopus 로고
    • "Propagation algorithms for variational Bayesian learning"
    • in Cambridge, MA: MIT Press
    • Z. Ghahramani and M. J. Beal, "Propagation algorithms for variational Bayesian learning," in Advances in Neural Information Processing Systems (NIPS), vol. 13. Cambridge, MA: MIT Press, 2001, pp. 294-300.
    • (2001) Advances in Neural Information Processing Systems (NIPS) , vol.13 , pp. 294-300
    • Ghahramani, Z.1    Beal, M.J.2
  • 30
    • 18244378520 scopus 로고    scopus 로고
    • "On Bayesian analysis of mixtures with an unknown number of components"
    • S. Richardson and P. J. Green, "On Bayesian analysis of mixtures with an unknown number of components," J. Roy. Stat. Soc., Ser. B, vol. 59, no. 4, pp. 731-792, 1997.
    • (1997) J. Roy. Stat. Soc., Ser. B , vol.59 , Issue.4 , pp. 731-792
    • Richardson, S.1    Green, P.J.2
  • 31
    • 0000211514 scopus 로고    scopus 로고
    • "Robust full Bayesian learning for radial basis networks"
    • Oct
    • C. Andrieu, N. de Freitas, and A. Doucet, "Robust full Bayesian learning for radial basis networks," Neural Comput., vol. 13, no. 10, pp. 2359-2407, Oct. 2001.
    • (2001) Neural Comput. , vol.13 , Issue.10 , pp. 2359-2407
    • Andrieu, C.1    de Freitas, N.2    Doucet, A.3
  • 32
    • 0034170950 scopus 로고    scopus 로고
    • "Variational learning for switching state-space methods"
    • Apr
    • Z. Ghahramani and G. E. Hinton, "Variational learning for switching state-space methods," Neural Comput., vol. 12, no. 4, pp. 831-864, Apr. 2000.
    • (2000) Neural Comput. , vol.12 , Issue.4 , pp. 831-864
    • Ghahramani, Z.1    Hinton, G.E.2
  • 33
    • 0036729732 scopus 로고    scopus 로고
    • "Variational Bayes for generalized autoregressive models"
    • Sep
    • S. J. Roberts and W. D. Penny, "Variational Bayes for generalized autoregressive models," IEEE Trans. Signal Process., vol. 50, no. 9, pp. 2245-2257, Sep. 2002.
    • (2002) IEEE Trans. Signal Process. , vol.50 , Issue.9 , pp. 2245-2257
    • Roberts, S.J.1    Penny, W.D.2
  • 35
    • 84898934543 scopus 로고    scopus 로고
    • "Variational inference for Bayesian mixtures of factor analysers"
    • in Cambridge, MA: MIT Press
    • Z. Ghahramani and M. J. Beal, "Variational inference for Bayesian mixtures of factor analysers," in Advances in Neural Information Processing Systems (NIPS), vol. 12. Cambridge, MA: MIT Press, 2000, pp. 449-455.
    • (2000) Advances in Neural Information Processing Systems (NIPS) , vol.12 , pp. 449-455
    • Ghahramani, Z.1    Beal, M.J.2
  • 36
    • 0037270849 scopus 로고    scopus 로고
    • "Variational mixture of Bayesian independent component analyzers"
    • Jan
    • R. A. Choudrey and S. J. Roberts, "Variational mixture of Bayesian independent component analyzers," Neural Comput., vol. 15, no. 1, pp. 213-252, Jan. 2003.
    • (2003) Neural Comput. , vol.15 , Issue.1 , pp. 213-252
    • Choudrey, R.A.1    Roberts, S.J.2
  • 37
    • 0003278032 scopus 로고    scopus 로고
    • "Inferring parameters and structure of latent variable models by variational Bayes"
    • in Stockholm, Sweden
    • H. Attias, "Inferring parameters and structure of latent variable models by variational Bayes," in Proc. 15th Conf. Uncertainty Artif. Intell., Stockholm, Sweden, 1999, pp. 21-30.
    • (1999) Proc. 15th Conf. Uncertainty Artif. Intell. , pp. 21-30
    • Attias, H.1
  • 38
    • 35248864859 scopus 로고    scopus 로고
    • "Blind source separation using variational expectation-maximization algorithm"
    • in Proc. Int. Conf. Comput. Anal. Images Patterns, Groningen, The Netherlands
    • N. Nasios and A. G. Bors, "Blind source separation using variational expectation-maximization algorithm," in Proc. Int. Conf. Comput. Anal. Images Patterns, Lecture Notes in Computer Science 2756, Groningen, The Netherlands, 2003, pp. 442-450.
    • (2003) Lecture Notes in Computer Science , vol.2756 , pp. 442-450
    • Nasios, N.1    Bors, A.G.2
  • 39
    • 33746783604 scopus 로고    scopus 로고
    • "Variational segmentation of color images"
    • in Genova, Italy
    • N. Nasios and A. G. Bors, "Variational segmentation of color images," in Proc. IEEE Int. Conf. Image Process., Genova, Italy, 2005, vol. II, pp. 614-617.
    • (2005) Proc. IEEE Int. Conf. Image Process. , vol.2 , pp. 614-617
    • Nasios, N.1    Bors, A.G.2
  • 40
    • 0000120766 scopus 로고
    • "Estimating the dimension of a model"
    • G. Schwarz, "Estimating the dimension of a model," Ann. Stat., vol. 7, no. 2, pp. 461-464, 1978.
    • (1978) Ann. Stat. , vol.7 , Issue.2 , pp. 461-464
    • Schwarz, G.1
  • 42
    • 0141484919 scopus 로고
    • "Maximum-likelihood estimation of Dirichlet distributions"
    • G. Ronning, "Maximum-likelihood estimation of Dirichlet distributions," J. Statist. Comput. Simul., vol. 32, no. 4, pp. 215-221, 1989.
    • (1989) J. Statist. Comput. Simul. , vol.32 , Issue.4 , pp. 215-221
    • Ronning, G.1
  • 44
    • 0242498887 scopus 로고
    • "Quadrature modulated signal detection based on Gaussian neural networks"
    • in Melbourne, Australia
    • A. G. Bors and M. Gabbouj, "Quadrature modulated signal detection based on Gaussian neural networks," in Proc. IEEE Workshop Vis. Signal Process. Commun., Melbourne, Australia, 1993, pp. 113-116.
    • (1993) Proc. IEEE Workshop Vis. Signal Process. Commun. , pp. 113-116
    • Bors, A.G.1    Gabbouj, M.2
  • 45
    • 0036505043 scopus 로고    scopus 로고
    • "Novel technique for multiresolution color image segmentation"
    • Mar
    • J. B. Gao, J. Zhang, and M. G. Fleming, "Novel technique for multiresolution color image segmentation," Opt. Eng., vol. 41, no. 3, pp. 608-614, Mar. 2002.
    • (2002) Opt. Eng. , vol.41 , Issue.3 , pp. 608-614
    • Gao, J.B.1    Zhang, J.2    Fleming, M.G.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.