메뉴 건너뛰기




Volumn 14, Issue 4, 2004, Pages 343-355

Learning a multivariate Gaussian mixture model with the reversible jump MCMC algorithm

Author keywords

Bayesian inference; Gaussian mixture model; Markov chain Monte Carlo; model selection; reversible jump methodology; split and combine moves

Indexed keywords


EID: 4444233747     PISSN: 09603174     EISSN: None     Source Type: Journal    
DOI: 10.1023/B:STCO.0000039484.36470.41     Document Type: Article
Times cited : (65)

References (30)
  • 1
    • 0000211514 scopus 로고    scopus 로고
    • Robust full Bayesian learning for radial basis networks
    • Andrieu C., de Freitas N., and Doucet A. 2001. Robust full Bayesian learning for radial basis networks. Neural Computation 13: 2359-2407.
    • (2001) Neural Computation , vol.13 , pp. 2359-2407
    • Andrieu, C.1    De Freitas, N.2    Doucet, A.3
  • 2
    • 0033349354 scopus 로고    scopus 로고
    • Joint Bayesian model selection and estimation of noisy sinusoids via reversible jump MCMC
    • Andrieu C. and Doucet A. 1999. Joint Bayesian model selection and estimation of noisy sinusoids via reversible jump MCMC. IEEE Transactions Signal Processing 47: 2667-2676.
    • (1999) IEEE Transactions Signal Processing , vol.47 , pp. 2667-2676
    • Andrieu, C.1    Doucet, A.2
  • 4
    • 0027453616 scopus 로고
    • Model-based Gaussian and non-Gaussian clustering
    • Banfield J.D. and Raftery A.E. 1993. Model-based Gaussian and non-Gaussian clustering. Biometrics 49: 803-821.
    • (1993) Biometrics , vol.49 , pp. 803-821
    • Banfield, J.D.1    Raftery, A.E.2
  • 5
    • 0030326891 scopus 로고    scopus 로고
    • Regularized Gaussian discriminant analysis through eigenvalue decomposition
    • Bensmail H. and Celeux G. 1996. Regularized Gaussian discriminant analysis through eigenvalue decomposition. Journal of the American Statistical Association 91(436): 1743-1748.
    • (1996) Journal of the American Statistical Association , vol.91 , Issue.436 , pp. 1743-1748
    • Bensmail, H.1    Celeux, G.2
  • 7
    • 0043173919 scopus 로고    scopus 로고
    • Reversible jump, birth-and-death and more general continuous time Markov Chain Monte Carlo samplers
    • Cappé O., Robert C.P., and Rydén T. 2003. Reversible jump, birth-and-death and more general continuous time Markov Chain Monte Carlo samplers. Journal of the Royal Statistical Society, B 65: 679-700.
    • (2003) Journal of the Royal Statistical Society, B , vol.65 , pp. 679-700
    • Cappé, O.1    Robert, C.P.2    Rydén, T.3
  • 8
    • 2242491935 scopus 로고    scopus 로고
    • Computational and inferential difficulties with mixture posterior distributions
    • Celeux G., Hurn M., and Robert C.P. 2000. Computational and inferential difficulties with mixture posterior distributions. Journal of the American Statistical Association 95(451): 957-970.
    • (2000) Journal of the American Statistical Association , vol.95 , Issue.451 , pp. 957-970
    • Celeux, G.1    Hurn, M.2    Robert, C.P.3
  • 13
    • 0345463555 scopus 로고
    • Discussion on representations of knowledge in complex systems
    • by U. Grenander
    • Green P.J. 1994. Discussion on representations of knowledge in complex systems (by U. Grenander). Journal of the Royal Statistial Society Series B 56: 589-590.
    • (1994) Journal of the Royal Statistial Society Series B , vol.56 , pp. 589-590
    • Green, P.J.1
  • 14
    • 77956889087 scopus 로고
    • Reversible jump Markov Chain Monte Carlo computation and Bayesian model determination
    • Green P.J. 1995. Reversible jump Markov Chain Monte Carlo computation and Bayesian model determination. Biometrika 82: 711-732.
    • (1995) Biometrika , vol.82 , pp. 711-732
    • Green, P.J.1
  • 17
    • 0000840529 scopus 로고    scopus 로고
    • Bayesian radial basis functions of variable dimension
    • Holmes C.C. and Mallick B.K. 1998. Bayesian radial basis functions of variable dimension. Neural Computation 10: 1217-1233.
    • (1998) Neural Computation , vol.10 , pp. 1217-1233
    • Holmes, C.C.1    Mallick, B.K.2
  • 18
    • 0036475791 scopus 로고    scopus 로고
    • Reversible jump MCMC for joint detection and estimation of sources in colored noise
    • Larocque J.R. and Reilly J.P. 2002. Reversible jump MCMC for joint detection and estimation of sources in colored noise. IEEE Transactions on Signal Processing 50(2): 231-240.
    • (2002) IEEE Transactions on Signal Processing , vol.50 , Issue.2 , pp. 231-240
    • Larocque, J.R.1    Reilly, J.P.2
  • 21
    • 0021404166 scopus 로고
    • Mixture densities, maximum likelihood and the EM algorithm
    • Redner R.A. and Walker H.F. 1984. Mixture densities, maximum likelihood and the EM algorithm. SIAM Review 26(2): 195-239.
    • (1984) SIAM Review , vol.26 , Issue.2 , pp. 195-239
    • Redner, R.A.1    Walker, H.F.2
  • 22
    • 18244378520 scopus 로고    scopus 로고
    • On Bayesian analysis of mixtures with an unknown number of components
    • with discussion
    • Richardson S. and Green P.J. 1997. On Bayesian analysis of mixtures with an unknown number of components (with discussion). Journal of the Royal Statistical Society Series B 59: 731-792.
    • (1997) Journal of the Royal Statistical Society Series B , vol.59 , pp. 731-792
    • Richardson, S.1    Green, P.J.2
  • 23
    • 0000228369 scopus 로고    scopus 로고
    • Corrigendum: On Bayesian analysis of mixtures with an unknown number of components
    • with discussion
    • Richardson S. and Green P.J. 1998. Corrigendum: On Bayesian analysis of mixtures with an unknown number of components (with discussion). Journal of the Royal Statistical Society Series B 60: 661.
    • (1998) Journal of the Royal Statistical Society Series B , vol.60 , pp. 661
    • Richardson, S.1    Green, P.J.2
  • 24
    • 0000599677 scopus 로고    scopus 로고
    • Mixtures of distributions: Inference and estimation
    • Gilks W.R., Richardson S., and Spiegelhalter D.J. (eds.), Chapman and Hall, London. Chapt. 24
    • Robert C.P. 1996. Mixtures of distributions: Inference and estimation. In Gilks W.R., Richardson S., and Spiegelhalter D.J. (eds.), Markov Chain Monte Carlo in Practice. Chapman and Hall, London. Chapt. 24, pp. 441-464.
    • (1996) Markov Chain Monte Carlo in Practice , pp. 441-464
    • Robert, C.P.1
  • 25
    • 0034366269 scopus 로고    scopus 로고
    • Bayesian inference in hidden Markov models through the reversible jump Markov Chain Monte Carlo method
    • Robert C.P., Rydén T., and Titterington D.M. 2000. Bayesian inference in hidden Markov models through the reversible jump Markov Chain Monte Carlo method. Journal of the Royal Statistical Society Series B 62: 57-75.
    • (2000) Journal of the Royal Statistical Society Series B , vol.62 , pp. 57-75
    • Robert, C.P.1    Rydén, T.2    Titterington, D.M.3
  • 26
    • 0000147488 scopus 로고    scopus 로고
    • On-line model selection based on the variational Bayes
    • Sato M. 2001. On-line model selection based on the variational Bayes. Neural Computation 13(7): 1649-1681.
    • (2001) Neural Computation , vol.13 , Issue.7 , pp. 1649-1681
    • Sato, M.1
  • 27
    • 0034374610 scopus 로고    scopus 로고
    • Bayesian analysis of mixtures with an unknown number of components - An llternative to reversible jump methods
    • Stephens M. 2000a. Bayesian analysis of mixtures with an unknown number of components - An llternative to reversible jump methods. Annals of Statistics 28: 40-74.
    • (2000) Annals of Statistics , vol.28 , pp. 40-74
    • Stephens, M.1
  • 30
    • 0038309400 scopus 로고    scopus 로고
    • EM algorithms for Gaussian mixtures with split-and-merge operation
    • Zhang Z., Chen C., Sun J., and Chan K.L. 2003. EM algorithms for Gaussian mixtures with split-and-merge operation. Pattern Recognition 36: 1973-1983.
    • (2003) Pattern Recognition , vol.36 , pp. 1973-1983
    • Zhang, Z.1    Chen, C.2    Sun, J.3    Chan, K.L.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.