메뉴 건너뛰기




Volumn 40, Issue 8, 2010, Pages 705-714

Tackling EEG signal classification with least squares support vector machines: A sensitivity analysis study

Author keywords

EEG signal classification; Epilepsy; Kernel functions; Least squares support vector machines; Sensitivity analysis

Indexed keywords

BIOLOGICAL SIGNALS; COMMUNICATION CHANNEL; DATA SETS; EEG SIGNAL CLASSIFICATION; EEG SIGNALS; ELECTRICAL ACTIVITIES; ELECTROENCEPHALOGRAM SIGNALS; HUMAN BRAIN; KERNEL FUNCTION; KERNEL FUNCTIONS; KERNEL MACHINE; LEAST SQUARE; LEAST SQUARES SUPPORT VECTOR MACHINES; NEUROLOGICAL DISORDERS; PARAMETER VALUES; PERFORMANCE LEVEL; SENSITIVITY PROFILES; SVM CLASSIFIERS; SVM MODEL;

EID: 77955580523     PISSN: 00104825     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.compbiomed.2010.06.005     Document Type: Article
Times cited : (58)

References (36)
  • 4
    • 0842310823 scopus 로고    scopus 로고
    • A neural-network-based detection of epilepsy
    • Nigam V.P., Graupe D. A neural-network-based detection of epilepsy. Neurol. Res. 2004, 26:55-60.
    • (2004) Neurol. Res. , vol.26 , pp. 55-60
    • Nigam, V.P.1    Graupe, D.2
  • 5
    • 0032834572 scopus 로고    scopus 로고
    • Non-linear time series analysis of intracranial EEG recordings in patients with epilepsy-an overview
    • Lehnertz K. Non-linear time series analysis of intracranial EEG recordings in patients with epilepsy-an overview. Int. J. Psychophysiol. 1999, 34:45-52.
    • (1999) Int. J. Psychophysiol. , vol.34 , pp. 45-52
    • Lehnertz, K.1
  • 6
    • 0035682573 scopus 로고    scopus 로고
    • Indications of nonlinear deterministic and finite dimensional structures in time series of brain electrical activity: dependence on recording region and brain state
    • article ID 061907
    • Andrzejak R.G., Lehnertz K., Mormann F., Rieke C., David P., Elger C.E. Indications of nonlinear deterministic and finite dimensional structures in time series of brain electrical activity: dependence on recording region and brain state. Phys. Rev. E 2001, 64. article ID 061907.
    • (2001) Phys. Rev. E , vol.64
    • Andrzejak, R.G.1    Lehnertz, K.2    Mormann, F.3    Rieke, C.4    David, P.5    Elger, C.E.6
  • 7
    • 0035023402 scopus 로고    scopus 로고
    • The epileptic process as nonlinear deterministic dynamics in a stochastic environment: an evaluation on mesial temporal lobe epilepsy
    • Andrzejak R.G., Widman G, Lehnertz K., Rieke C., David P., Elger C.E. The epileptic process as nonlinear deterministic dynamics in a stochastic environment: an evaluation on mesial temporal lobe epilepsy. Epilepsy Res. 2001, 44:129-140.
    • (2001) Epilepsy Res. , vol.44 , pp. 129-140
    • Andrzejak, R.G.1    Widman, G.2    Lehnertz, K.3    Rieke, C.4    David, P.5    Elger, C.E.6
  • 9
    • 67649601026 scopus 로고    scopus 로고
    • Statistics over features: EEG signals analysis
    • Übeyli E.D. Statistics over features: EEG signals analysis. Comput. Biol. Med. 2009, 39:733-741.
    • (2009) Comput. Biol. Med. , vol.39 , pp. 733-741
    • Übeyli, E.D.1
  • 10
    • 17844371713 scopus 로고    scopus 로고
    • Epileptic seizure detection using dynamic wavelet network
    • Subasi A. Epileptic seizure detection using dynamic wavelet network. Expert Syst. Appl. 2005, 28:701-711.
    • (2005) Expert Syst. Appl. , vol.28 , pp. 701-711
    • Subasi, A.1
  • 11
    • 17744374301 scopus 로고    scopus 로고
    • Classification of EEG signals using neural network and logistic regression
    • Subasi A., Ercelebi E. Classification of EEG signals using neural network and logistic regression. Comput. Methods Prog. Biomed. 2005, 78:87-99.
    • (2005) Comput. Methods Prog. Biomed. , vol.78 , pp. 87-99
    • Subasi, A.1    Ercelebi, E.2
  • 12
    • 33751396389 scopus 로고    scopus 로고
    • EEG signal classification using wavelet feature extraction and a mixture of expert model
    • Subasi A. EEG signal classification using wavelet feature extraction and a mixture of expert model. Expert Syst. Appl. 2007, 32:1084-1093.
    • (2007) Expert Syst. Appl. , vol.32 , pp. 1084-1093
    • Subasi, A.1
  • 13
    • 37349024109 scopus 로고    scopus 로고
    • Wavelet/mixture of experts network structure for EEG signals classification
    • Übeyli E.D. Wavelet/mixture of experts network structure for EEG signals classification. Expert Syst. Appl. 2008, 34:1954-1962.
    • (2008) Expert Syst. Appl. , vol.34 , pp. 1954-1962
    • Übeyli, E.D.1
  • 14
    • 38749083808 scopus 로고    scopus 로고
    • Automatic seizure detection based on time-frequency analysis and artificial neural networks
    • article ID 80510
    • Tzallas A.T., Tsipouras M.G., Fotiadis D.I. Automatic seizure detection based on time-frequency analysis and artificial neural networks. Comput. Intel. Neurosci. 2007, 2007. article ID 80510.
    • (2007) Comput. Intel. Neurosci. , vol.2007
    • Tzallas, A.T.1    Tsipouras, M.G.2    Fotiadis, D.I.3
  • 15
    • 37849038260 scopus 로고    scopus 로고
    • Classification of EEG recordings by using fast independent component analysis and artificial neural network
    • Kocyigit Y., Alkan A., Erol H. Classification of EEG recordings by using fast independent component analysis and artificial neural network. J. Med. Syst. 2008, 32:17-20.
    • (2008) J. Med. Syst. , vol.32 , pp. 17-20
    • Kocyigit, Y.1    Alkan, A.2    Erol, H.3
  • 16
    • 26944458497 scopus 로고    scopus 로고
    • Adaptive neuro-fuzzy inference system for classification of EEG signals using wavelet coefficients
    • Güler İ., Übeyli E.D. Adaptive neuro-fuzzy inference system for classification of EEG signals using wavelet coefficients. J. Neurosci. Methods 2005, 148:113-121.
    • (2005) J. Neurosci. Methods , vol.148 , pp. 113-121
    • Güler, I.1    Übeyli, E.D.2
  • 18
    • 24144470790 scopus 로고    scopus 로고
    • Recurrent neural networks employing Lyapunov exponents for EEG signals classification
    • Güler N.F., Übeyli E.D., Güler İ. Recurrent neural networks employing Lyapunov exponents for EEG signals classification. Expert Syst. Appl. 2005, 29:506-514.
    • (2005) Expert Syst. Appl. , vol.29 , pp. 506-514
    • Güler, N.F.1    Übeyli, E.D.2    Güler, I.3
  • 19
    • 58549111381 scopus 로고    scopus 로고
    • Combined neural network model employing wavelet coefficients for EEG signals classification
    • Übeyli E.D. Combined neural network model employing wavelet coefficients for EEG signals classification. Digital Signal Process 2009, 19:297-308.
    • (2009) Digital Signal Process , vol.19 , pp. 297-308
    • Übeyli, E.D.1
  • 20
    • 34047114775 scopus 로고    scopus 로고
    • Multiclass support vector machines for EEG-signals classification
    • Güler I., Übeyli E.D. Multiclass support vector machines for EEG-signals classification. IEEE Trans. Inf. Technol. Biomed. 2007, 11:117-126.
    • (2007) IEEE Trans. Inf. Technol. Biomed. , vol.11 , pp. 117-126
    • Güler, I.1    Übeyli, E.D.2
  • 21
    • 37049007663 scopus 로고    scopus 로고
    • Analysis of EEG signals by combining eigenvector methods and multiclass support vector machines
    • Übeyli E.D. Analysis of EEG signals by combining eigenvector methods and multiclass support vector machines. Comput. Biol. Med. 2008, 38:14-22.
    • (2008) Comput. Biol. Med. , vol.38 , pp. 14-22
    • Übeyli, E.D.1
  • 25
    • 0032638628 scopus 로고    scopus 로고
    • Least squares support machine classifiers
    • Suykens J.A.K., Vandewalle J. Least squares support machine classifiers. Neural Proc. Lett. 1999, 9:293-300.
    • (1999) Neural Proc. Lett. , vol.9 , pp. 293-300
    • Suykens, J.A.K.1    Vandewalle, J.2
  • 28
    • 36549070691 scopus 로고    scopus 로고
    • Computer aided diagnosis of ECG data on the least square support vector machine
    • Kemal P., Bayram A., Güneş S. Computer aided diagnosis of ECG data on the least square support vector machine. Digital Signal Process. 2008, 18:25-32.
    • (2008) Digital Signal Process. , vol.18 , pp. 25-32
    • Kemal, P.1    Bayram, A.2    Güneş, S.3
  • 29
    • 0036161011 scopus 로고    scopus 로고
    • Choosing multiple parameters for support vector machines
    • Chapelle O., Vapnik V., Bousquet O., Mukherjee S. Choosing multiple parameters for support vector machines. Mach. Learn. 2002, 46:131-159.
    • (2002) Mach. Learn. , vol.46 , pp. 131-159
    • Chapelle, O.1    Vapnik, V.2    Bousquet, O.3    Mukherjee, S.4
  • 30
    • 0346250790 scopus 로고    scopus 로고
    • Practical selection of SVM parameters and noise estimation for SVM regression
    • Cherkassky V., Ma Y. Practical selection of SVM parameters and noise estimation for SVM regression. Neural Networks 2004, 17:113-126.
    • (2004) Neural Networks , vol.17 , pp. 113-126
    • Cherkassky, V.1    Ma, Y.2
  • 31
    • 15844394276 scopus 로고    scopus 로고
    • Evolutionary tuning of multiple SVM parameters
    • Friedrichs F., Igel C. Evolutionary tuning of multiple SVM parameters. Neurocomputing 2005, 64:107-117.
    • (2005) Neurocomputing , vol.64 , pp. 107-117
    • Friedrichs, F.1    Igel, C.2
  • 32
    • 37049017372 scopus 로고    scopus 로고
    • Probabilistic neural networks employing Lyapunov exponents for analysis of Doppler ultrasound signals
    • Übeyli E.D. Probabilistic neural networks employing Lyapunov exponents for analysis of Doppler ultrasound signals. Comput. Biol. Med. 2008, 38:82-89.
    • (2008) Comput. Biol. Med. , vol.38 , pp. 82-89
    • Übeyli, E.D.1
  • 33
    • 27744513132 scopus 로고    scopus 로고
    • Feature extraction from Doppler ultrasound signals for automated diagnostic systems
    • Übeyli E.D., Güler İ. Feature extraction from Doppler ultrasound signals for automated diagnostic systems. Comput. Biol. Med. 2005, 35:735-764.
    • (2005) Comput. Biol. Med. , vol.35 , pp. 735-764
    • Übeyli, E.D.1    Güler, I.2
  • 34
    • 42749088090 scopus 로고    scopus 로고
    • Usage of eigenvector methods to improve reliable classifier for Doppler ultrasound signals
    • Übeyli E.D. Usage of eigenvector methods to improve reliable classifier for Doppler ultrasound signals. Comput. Biol. Med. 2008, 38:563-573.
    • (2008) Comput. Biol. Med. , vol.38 , pp. 563-573
    • Übeyli, E.D.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.