-
3
-
-
33745882935
-
Application of SVM framework for classification of single trial EEG
-
Springer
-
Liao X., Yin Y., Li C., Yao D. Application of SVM framework for classification of single trial EEG. Advances in Neural Networks-ISNN 2006, Lecture Notes in Computer Science 2006, vol. 3973:548-553. Springer.
-
(2006)
Advances in Neural Networks-ISNN 2006, Lecture Notes in Computer Science
, vol.3973
, pp. 548-553
-
-
Liao, X.1
Yin, Y.2
Li, C.3
Yao, D.4
-
4
-
-
0842310823
-
A neural-network-based detection of epilepsy
-
Nigam V.P., Graupe D. A neural-network-based detection of epilepsy. Neurol. Res. 2004, 26:55-60.
-
(2004)
Neurol. Res.
, vol.26
, pp. 55-60
-
-
Nigam, V.P.1
Graupe, D.2
-
5
-
-
0032834572
-
Non-linear time series analysis of intracranial EEG recordings in patients with epilepsy-an overview
-
Lehnertz K. Non-linear time series analysis of intracranial EEG recordings in patients with epilepsy-an overview. Int. J. Psychophysiol. 1999, 34:45-52.
-
(1999)
Int. J. Psychophysiol.
, vol.34
, pp. 45-52
-
-
Lehnertz, K.1
-
6
-
-
0035682573
-
Indications of nonlinear deterministic and finite dimensional structures in time series of brain electrical activity: dependence on recording region and brain state
-
article ID 061907
-
Andrzejak R.G., Lehnertz K., Mormann F., Rieke C., David P., Elger C.E. Indications of nonlinear deterministic and finite dimensional structures in time series of brain electrical activity: dependence on recording region and brain state. Phys. Rev. E 2001, 64. article ID 061907.
-
(2001)
Phys. Rev. E
, vol.64
-
-
Andrzejak, R.G.1
Lehnertz, K.2
Mormann, F.3
Rieke, C.4
David, P.5
Elger, C.E.6
-
7
-
-
0035023402
-
The epileptic process as nonlinear deterministic dynamics in a stochastic environment: an evaluation on mesial temporal lobe epilepsy
-
Andrzejak R.G., Widman G, Lehnertz K., Rieke C., David P., Elger C.E. The epileptic process as nonlinear deterministic dynamics in a stochastic environment: an evaluation on mesial temporal lobe epilepsy. Epilepsy Res. 2001, 44:129-140.
-
(2001)
Epilepsy Res.
, vol.44
, pp. 129-140
-
-
Andrzejak, R.G.1
Widman, G.2
Lehnertz, K.3
Rieke, C.4
David, P.5
Elger, C.E.6
-
8
-
-
0030477483
-
Chaotic behavior of EEG slow-wave activity during sleep
-
Alicata F.M., Stefanini C., Elia M., Ferri R., Del Gracco S., Musumeci S.A. Chaotic behavior of EEG slow-wave activity during sleep. Electron. Clin. Neurophysiol. 1996, 99:539-543.
-
(1996)
Electron. Clin. Neurophysiol.
, vol.99
, pp. 539-543
-
-
Alicata, F.M.1
Stefanini, C.2
Elia, M.3
Ferri, R.4
Del Gracco, S.5
Musumeci, S.A.6
-
9
-
-
67649601026
-
Statistics over features: EEG signals analysis
-
Übeyli E.D. Statistics over features: EEG signals analysis. Comput. Biol. Med. 2009, 39:733-741.
-
(2009)
Comput. Biol. Med.
, vol.39
, pp. 733-741
-
-
Übeyli, E.D.1
-
10
-
-
17844371713
-
Epileptic seizure detection using dynamic wavelet network
-
Subasi A. Epileptic seizure detection using dynamic wavelet network. Expert Syst. Appl. 2005, 28:701-711.
-
(2005)
Expert Syst. Appl.
, vol.28
, pp. 701-711
-
-
Subasi, A.1
-
11
-
-
17744374301
-
Classification of EEG signals using neural network and logistic regression
-
Subasi A., Ercelebi E. Classification of EEG signals using neural network and logistic regression. Comput. Methods Prog. Biomed. 2005, 78:87-99.
-
(2005)
Comput. Methods Prog. Biomed.
, vol.78
, pp. 87-99
-
-
Subasi, A.1
Ercelebi, E.2
-
12
-
-
33751396389
-
EEG signal classification using wavelet feature extraction and a mixture of expert model
-
Subasi A. EEG signal classification using wavelet feature extraction and a mixture of expert model. Expert Syst. Appl. 2007, 32:1084-1093.
-
(2007)
Expert Syst. Appl.
, vol.32
, pp. 1084-1093
-
-
Subasi, A.1
-
13
-
-
37349024109
-
Wavelet/mixture of experts network structure for EEG signals classification
-
Übeyli E.D. Wavelet/mixture of experts network structure for EEG signals classification. Expert Syst. Appl. 2008, 34:1954-1962.
-
(2008)
Expert Syst. Appl.
, vol.34
, pp. 1954-1962
-
-
Übeyli, E.D.1
-
14
-
-
38749083808
-
Automatic seizure detection based on time-frequency analysis and artificial neural networks
-
article ID 80510
-
Tzallas A.T., Tsipouras M.G., Fotiadis D.I. Automatic seizure detection based on time-frequency analysis and artificial neural networks. Comput. Intel. Neurosci. 2007, 2007. article ID 80510.
-
(2007)
Comput. Intel. Neurosci.
, vol.2007
-
-
Tzallas, A.T.1
Tsipouras, M.G.2
Fotiadis, D.I.3
-
15
-
-
37849038260
-
Classification of EEG recordings by using fast independent component analysis and artificial neural network
-
Kocyigit Y., Alkan A., Erol H. Classification of EEG recordings by using fast independent component analysis and artificial neural network. J. Med. Syst. 2008, 32:17-20.
-
(2008)
J. Med. Syst.
, vol.32
, pp. 17-20
-
-
Kocyigit, Y.1
Alkan, A.2
Erol, H.3
-
16
-
-
26944458497
-
Adaptive neuro-fuzzy inference system for classification of EEG signals using wavelet coefficients
-
Güler İ., Übeyli E.D. Adaptive neuro-fuzzy inference system for classification of EEG signals using wavelet coefficients. J. Neurosci. Methods 2005, 148:113-121.
-
(2005)
J. Neurosci. Methods
, vol.148
, pp. 113-121
-
-
Güler, I.1
Übeyli, E.D.2
-
17
-
-
27744537035
-
Entropies for detection of epilepsy in EEG
-
Kannathal N., Min L.C., Acharya U.R., Sadasivan P.K. Entropies for detection of epilepsy in EEG. Comput. Methods Prog. Biomed. 2005, 80:187-194.
-
(2005)
Comput. Methods Prog. Biomed.
, vol.80
, pp. 187-194
-
-
Kannathal, N.1
Min, L.C.2
Acharya, U.R.3
Sadasivan, P.K.4
-
18
-
-
24144470790
-
Recurrent neural networks employing Lyapunov exponents for EEG signals classification
-
Güler N.F., Übeyli E.D., Güler İ. Recurrent neural networks employing Lyapunov exponents for EEG signals classification. Expert Syst. Appl. 2005, 29:506-514.
-
(2005)
Expert Syst. Appl.
, vol.29
, pp. 506-514
-
-
Güler, N.F.1
Übeyli, E.D.2
Güler, I.3
-
19
-
-
58549111381
-
Combined neural network model employing wavelet coefficients for EEG signals classification
-
Übeyli E.D. Combined neural network model employing wavelet coefficients for EEG signals classification. Digital Signal Process 2009, 19:297-308.
-
(2009)
Digital Signal Process
, vol.19
, pp. 297-308
-
-
Übeyli, E.D.1
-
20
-
-
34047114775
-
Multiclass support vector machines for EEG-signals classification
-
Güler I., Übeyli E.D. Multiclass support vector machines for EEG-signals classification. IEEE Trans. Inf. Technol. Biomed. 2007, 11:117-126.
-
(2007)
IEEE Trans. Inf. Technol. Biomed.
, vol.11
, pp. 117-126
-
-
Güler, I.1
Übeyli, E.D.2
-
21
-
-
37049007663
-
Analysis of EEG signals by combining eigenvector methods and multiclass support vector machines
-
Übeyli E.D. Analysis of EEG signals by combining eigenvector methods and multiclass support vector machines. Comput. Biol. Med. 2008, 38:14-22.
-
(2008)
Comput. Biol. Med.
, vol.38
, pp. 14-22
-
-
Übeyli, E.D.1
-
26
-
-
0037695279
-
-
World Scientific Publishers, Singapore
-
Suykens J.A.K., Van Gestel T., De Brabanter J., De Moor B., Vandewalle J. Least Squares Support Vector Machines 2002, World Scientific Publishers, Singapore.
-
(2002)
Least Squares Support Vector Machines
-
-
Suykens, J.A.K.1
Van Gestel, T.2
De Brabanter, J.3
De Moor, B.4
Vandewalle, J.5
-
27
-
-
0242288903
-
Benchmarking least squares support machine classifiers
-
Van Gestel T., Suykens J.A.K., Baesens B., Viaene S., Vanthienen J., Dedene G., De Moor B., Vandewalle J. Benchmarking least squares support machine classifiers. Mach. Learn. 2004, 54:5-32.
-
(2004)
Mach. Learn.
, vol.54
, pp. 5-32
-
-
Van Gestel, T.1
Suykens, J.A.K.2
Baesens, B.3
Viaene, S.4
Vanthienen, J.5
Dedene, G.6
De Moor, B.7
Vandewalle, J.8
-
28
-
-
36549070691
-
Computer aided diagnosis of ECG data on the least square support vector machine
-
Kemal P., Bayram A., Güneş S. Computer aided diagnosis of ECG data on the least square support vector machine. Digital Signal Process. 2008, 18:25-32.
-
(2008)
Digital Signal Process.
, vol.18
, pp. 25-32
-
-
Kemal, P.1
Bayram, A.2
Güneş, S.3
-
29
-
-
0036161011
-
Choosing multiple parameters for support vector machines
-
Chapelle O., Vapnik V., Bousquet O., Mukherjee S. Choosing multiple parameters for support vector machines. Mach. Learn. 2002, 46:131-159.
-
(2002)
Mach. Learn.
, vol.46
, pp. 131-159
-
-
Chapelle, O.1
Vapnik, V.2
Bousquet, O.3
Mukherjee, S.4
-
30
-
-
0346250790
-
Practical selection of SVM parameters and noise estimation for SVM regression
-
Cherkassky V., Ma Y. Practical selection of SVM parameters and noise estimation for SVM regression. Neural Networks 2004, 17:113-126.
-
(2004)
Neural Networks
, vol.17
, pp. 113-126
-
-
Cherkassky, V.1
Ma, Y.2
-
31
-
-
15844394276
-
Evolutionary tuning of multiple SVM parameters
-
Friedrichs F., Igel C. Evolutionary tuning of multiple SVM parameters. Neurocomputing 2005, 64:107-117.
-
(2005)
Neurocomputing
, vol.64
, pp. 107-117
-
-
Friedrichs, F.1
Igel, C.2
-
32
-
-
37049017372
-
Probabilistic neural networks employing Lyapunov exponents for analysis of Doppler ultrasound signals
-
Übeyli E.D. Probabilistic neural networks employing Lyapunov exponents for analysis of Doppler ultrasound signals. Comput. Biol. Med. 2008, 38:82-89.
-
(2008)
Comput. Biol. Med.
, vol.38
, pp. 82-89
-
-
Übeyli, E.D.1
-
33
-
-
27744513132
-
Feature extraction from Doppler ultrasound signals for automated diagnostic systems
-
Übeyli E.D., Güler İ. Feature extraction from Doppler ultrasound signals for automated diagnostic systems. Comput. Biol. Med. 2005, 35:735-764.
-
(2005)
Comput. Biol. Med.
, vol.35
, pp. 735-764
-
-
Übeyli, E.D.1
Güler, I.2
-
34
-
-
42749088090
-
Usage of eigenvector methods to improve reliable classifier for Doppler ultrasound signals
-
Übeyli E.D. Usage of eigenvector methods to improve reliable classifier for Doppler ultrasound signals. Comput. Biol. Med. 2008, 38:563-573.
-
(2008)
Comput. Biol. Med.
, vol.38
, pp. 563-573
-
-
Übeyli, E.D.1
-
35
-
-
70350203697
-
Model selection based on VC-dimension for heterogeneous ensembles of support vector machines
-
Nottingham University Press, Nottingham,
-
Lima C.A.M., Coelho A.L.V., Von Zuben F.J. Model selection based on VC-dimension for heterogeneous ensembles of support vector machines. Proceedings of the Fourth International Conference on Recent Advances in Soft Computing 2002, Nottingham University Press, Nottingham, pp. 459-464.
-
(2002)
Proceedings of the Fourth International Conference on Recent Advances in Soft Computing
, pp. 459-464
-
-
Lima, C.A.M.1
Coelho, A.L.V.2
Von Zuben, F.J.3
-
36
-
-
48349137084
-
A multistage ensemble of support vector machine variants
-
Nottingham, University Press, Nottingham,
-
Lima C.A.M., Villanueva W.J.P., dos Santos E.P., Von Zuben F.J. A multistage ensemble of support vector machine variants. Proceedings of the Fifth International Conference on Recent Advances in Soft Computing 2004, Nottingham, University Press, Nottingham, pp. 670-675.
-
(2004)
Proceedings of the Fifth International Conference on Recent Advances in Soft Computing
, pp. 670-675
-
-
Lima, C.A.M.1
Villanueva, W.J.P.2
dos Santos, E.P.3
Von Zuben, F.J.4
|