메뉴 건너뛰기




Volumn 41, Issue , 2013, Pages 188-201

Dynamic evolving spiking neural networks for on-line spatio- and spectro-temporal pattern recognition

Author keywords

Dynamic synapses; EEG pattern recognition; Evolving connectionist systems; Moving object recognition; Rank order coding; Spatio temporal pattern recognition; Spike time based learning; Spiking neural networks

Indexed keywords

DYNAMIC SYNAPSIS; EEG PATTERN RECOGNITION; EVOLVING CONNECTIONIST SYSTEMS; MOVING OBJECT RECOGNITION; RANK-ORDER CODING; SPATIOTEMPORAL PATTERNS; SPIKING NEURAL NETWORKS; TIME BASED;

EID: 84875878715     PISSN: 08936080     EISSN: 18792782     Source Type: Journal    
DOI: 10.1016/j.neunet.2012.11.014     Document Type: Article
Times cited : (334)

References (77)
  • 1
    • 84865106364 scopus 로고    scopus 로고
    • Building block of a programmable neuromorphic substrate: a digital neurosynaptic core
    • IEEE Press, Brisbane
    • Arthur J.V., Merolla P.A., Akopyan F., Alvarez R., Cassidy A., Chandra A., et al. Building block of a programmable neuromorphic substrate: a digital neurosynaptic core. Proc. IJCNN 2012 2012, IEEE Press, Brisbane.
    • (2012) Proc. IJCNN 2012
    • Arthur, J.V.1    Merolla, P.A.2    Akopyan, F.3    Alvarez, R.4    Cassidy, A.5    Chandra, A.6
  • 3
    • 33750308619 scopus 로고    scopus 로고
    • Advances in design and application of spiking neural networks
    • Belatreche A., Maguire L.P., McGinnity M. Advances in design and application of spiking neural networks. Soft Computing 2006, 11(3):239-248.
    • (2006) Soft Computing , vol.11 , Issue.3 , pp. 239-248
    • Belatreche, A.1    Maguire, L.P.2    McGinnity, M.3
  • 6
    • 80054730020 scopus 로고    scopus 로고
    • Unsupervised features extraction from asynchronous silicon retina spike-timing-dependent plasticity
    • IEEE Press
    • Bichler O., Ouerlioz D., Thorpe S., Bourgoin J.-P., Gamrat C. Unsupervised features extraction from asynchronous silicon retina spike-timing-dependent plasticity. Proc. IJCNN 2011 2011, 859-866. IEEE Press.
    • (2011) Proc. IJCNN 2011 , pp. 859-866
    • Bichler, O.1    Ouerlioz, D.2    Thorpe, S.3    Bourgoin, J.-P.4    Gamrat, C.5
  • 7
    • 4344671205 scopus 로고    scopus 로고
    • The evidence for neural information processing with precise spike-times: a survey
    • Bohte S.M. The evidence for neural information processing with precise spike-times: a survey. Natural Computing 2004, 3.
    • (2004) Natural Computing , vol.3
    • Bohte, S.M.1
  • 8
    • 36248934673 scopus 로고    scopus 로고
    • Learning real-world stimuli in a neural network with spike-driven synaptic dynamics
    • Brader J., Senn W., Fusi S. Learning real-world stimuli in a neural network with spike-driven synaptic dynamics. Neural Computation 2007, 19(11):2881-2912.
    • (2007) Neural Computation , vol.19 , Issue.11 , pp. 2881-2912
    • Brader, J.1    Senn, W.2    Fusi, S.3
  • 9
    • 35248866865 scopus 로고    scopus 로고
    • Simulation of networks of spiking neurons: a review of tools and strategies
    • Brette R., et al. Simulation of networks of spiking neurons: a review of tools and strategies. Journal of Computational Neuroscience 2007, 23:349-398.
    • (2007) Journal of Computational Neuroscience , vol.23 , pp. 349-398
    • Brette, R.1
  • 11
    • 84875890083 scopus 로고    scopus 로고
    • jAER open source project.
    • Delbruck, T. (2007). jAER open source project. http://jaer.wiki.sourceforge.net.
    • (2007)
    • Delbruck, T.1
  • 12
    • 84864365590 scopus 로고    scopus 로고
    • On-line spatiotemporal pattern recognition with evolving spiking neural networks utilising address event representation, rank oder- and temporal spike learning
    • IEEE Press
    • Dhoble K., Nuntalid N., Indivery G., Kasabov N. On-line spatiotemporal pattern recognition with evolving spiking neural networks utilising address event representation, rank oder- and temporal spike learning. Proc. WCCI 2012 2012, 554-560. IEEE Press.
    • (2012) Proc. WCCI 2012 , pp. 554-560
    • Dhoble, K.1    Nuntalid, N.2    Indivery, G.3    Kasabov, N.4
  • 13
    • 77955351275 scopus 로고    scopus 로고
    • Advances in EEG-based biometry
    • Springer, A. Campilho, M. Kamel (Eds.) ICIAR 2010
    • Ferreira A., Almeida C., Georgieva P., Tomé A., Silva F. Advances in EEG-based biometry. LNCS 2010, vol. 6112:287-295. Springer. A. Campilho, M. Kamel (Eds.).
    • (2010) LNCS , vol.6112 , pp. 287-295
    • Ferreira, A.1    Almeida, C.2    Georgieva, P.3    Tomé, A.4    Silva, F.5
  • 14
    • 0034293117 scopus 로고    scopus 로고
    • Amit Spike-driven synaptic plasticity: theory, simulation, VLSI implementation
    • Fusi S., Annunziato M., Badoni D., Salamon A., Amit Spike-driven synaptic plasticity: theory, simulation, VLSI implementation. Neural Computation 2000, 12(10):2227-2258.
    • (2000) Neural Computation , vol.12 , Issue.10 , pp. 2227-2258
    • Fusi, S.1    Annunziato, M.2    Badoni, D.3    Salamon, A.4
  • 15
    • 0000788367 scopus 로고
    • Time structure of the activity of neural network models
    • Gerstner W. Time structure of the activity of neural network models. Physical Review 1995, 51:738-758.
    • (1995) Physical Review , vol.51 , pp. 738-758
    • Gerstner, W.1
  • 16
    • 17044424557 scopus 로고    scopus 로고
    • Neurons tune to the earliest spikes through STDP
    • April 2005
    • Guyonneau R., VanRullen R., Thorpe S. Neurons tune to the earliest spikes through STDP. Neural Computation 2005, 17(4):859-879. April 2005.
    • (2005) Neural Computation , vol.17 , Issue.4 , pp. 859-879
    • Guyonneau, R.1    VanRullen, R.2    Thorpe, S.3
  • 18
    • 35649001607 scopus 로고
    • A quantitative description of membrane current and its application to conduction and excitation in nerve
    • Hodgkin A.L., Huxley A.F. A quantitative description of membrane current and its application to conduction and excitation in nerve. Journal of Physiology 1952, 117:500-544.
    • (1952) Journal of Physiology , vol.117 , pp. 500-544
    • Hodgkin, A.L.1    Huxley, A.F.2
  • 19
    • 77957775251 scopus 로고    scopus 로고
    • Artificial cognitive systems: from VLSI networks of spiking neurons to neuromorphic cognition
    • Indiveri G., Chicca E., Douglas R.J. Artificial cognitive systems: from VLSI networks of spiking neurons to neuromorphic cognition. Cognitive Computation 2009, 1(2):119-127.
    • (2009) Cognitive Computation , vol.1 , Issue.2 , pp. 119-127
    • Indiveri, G.1    Chicca, E.2    Douglas, R.J.3
  • 21
    • 80255127113 scopus 로고    scopus 로고
    • Neuromorphic silicon neuron circuits
    • Indiveri G., et al. Neuromorphic silicon neuron circuits. Frontiers in Neuroscience 2011, 5:1-23.
    • (2011) Frontiers in Neuroscience , vol.5 , pp. 1-23
    • Indiveri, G.1
  • 22
    • 77956001893 scopus 로고    scopus 로고
    • Spike-based learning with a generalized integrate and fire silicon neuron.
    • ISCAS 2010. Paris, May 30-June 02.
    • Indiveri, G., Stefanini, F., & Chicca, E. (2010). Spike-based learning with a generalized integrate and fire silicon neuron. In 2010 IEEE int. symp. circuits and syst., ISCAS 2010 (pp. 1951-1954). Paris, May 30-June 02.
    • (2010) In 2010 IEEE int. symp. circuits and syst. , pp. 1951-1954
    • Indiveri, G.1    Stefanini, F.2    Chicca, E.3
  • 23
    • 70350241178 scopus 로고    scopus 로고
    • Recent advances in brain-machine interfaces
    • Brain-Machine Interface
    • Isa T., Fetz E.E., Muller K. Recent advances in brain-machine interfaces. Neural Networks 2009, 22(9):1201-1202. Brain-Machine Interface.
    • (2009) Neural Networks , vol.22 , Issue.9 , pp. 1201-1202
    • Isa, T.1    Fetz, E.E.2    Muller, K.3
  • 24
    • 4344661328 scopus 로고    scopus 로고
    • Which model to use for cortical spiking neurons?
    • Izhikevich E.M. Which model to use for cortical spiking neurons?. IEEE Transactions on Neural Networks 2004, 15(5):1063-1070.
    • (2004) IEEE Transactions on Neural Networks , vol.15 , Issue.5 , pp. 1063-1070
    • Izhikevich, E.M.1
  • 25
    • 33644898137 scopus 로고    scopus 로고
    • Polychronization: computation with spikes
    • Izhikevich E.M. Polychronization: computation with spikes. Neural Computation 2006, 18:245-282.
    • (2006) Neural Computation , vol.18 , pp. 245-282
    • Izhikevich, E.M.1
  • 27
    • 0035670764 scopus 로고    scopus 로고
    • Evolving fuzzy neural networks for on-line supervised/unsupervised, knowledge-based learning
    • Kasabov N. Evolving fuzzy neural networks for on-line supervised/unsupervised, knowledge-based learning. IEEE Transactions on Systems, Man and Cybernetics, Part B (Cybernetics) 2001, 31(6):902-918.
    • (2001) IEEE Transactions on Systems, Man and Cybernetics, Part B (Cybernetics) , vol.31 , Issue.6 , pp. 902-918
    • Kasabov, N.1
  • 30
    • 70649084995 scopus 로고    scopus 로고
    • To spike or not to spike: a probabilistic spiking neuron model
    • Kasabov N. To spike or not to spike: a probabilistic spiking neuron model. Neural Networks 2010, 23(1):16-19.
    • (2010) Neural Networks , vol.23 , Issue.1 , pp. 16-19
    • Kasabov, N.1
  • 31
    • 84865012572 scopus 로고    scopus 로고
    • Kasabov Evolving spiking neural networks and neurogenetic systems for spatio- and spectro-temporal data modelling and pattern recognition
    • Springer-Verlag, Berlin, Heidelberg, J. Liu (Ed.) IEEE WCCI 2012
    • Kasabov Evolving spiking neural networks and neurogenetic systems for spatio- and spectro-temporal data modelling and pattern recognition. LNCS 2012, vol. 7311:234-260. Springer-Verlag, Berlin, Heidelberg. J. Liu (Ed.).
    • (2012) LNCS , vol.7311 , pp. 234-260
  • 32
    • 84867638020 scopus 로고    scopus 로고
    • NeuCube EvoSpike architecture for spatio-temporal modelling and pattern recognition of brain signals
    • Springer, Mana, Schwenker, Trentin (Eds.) ANNPR
    • Kasabov N. NeuCube EvoSpike architecture for spatio-temporal modelling and pattern recognition of brain signals. LNAI 2012, vol. 7477:225-243. Springer. Mana, Schwenker, Trentin (Eds.).
    • (2012) LNAI , vol.7477 , pp. 225-243
    • Kasabov, N.1
  • 36
    • 81855183715 scopus 로고    scopus 로고
    • Probabilistic computational neurogenetic framework: from modelling cognitive systems to alzheimer's disease
    • Kasabov N., Schliebs R., Kojima H. Probabilistic computational neurogenetic framework: from modelling cognitive systems to alzheimer's disease. IEEE Transactions on Autonomous Mental Development 2011, 3(4):300-311.
    • (2011) IEEE Transactions on Autonomous Mental Development , vol.3 , Issue.4 , pp. 300-311
    • Kasabov, N.1    Schliebs, R.2    Kojima, H.3
  • 37
    • 0036530967 scopus 로고    scopus 로고
    • DENFIS: dynamic, evolving neural-fuzzy inference systems and its application for time-series prediction
    • Kasabov N., Song Q. DENFIS: dynamic, evolving neural-fuzzy inference systems and its application for time-series prediction. IEEE Transactions on Fuzzy Systems 2002, 10:144-154.
    • (2002) IEEE Transactions on Fuzzy Systems , vol.10 , pp. 144-154
    • Kasabov, N.1    Song, Q.2
  • 41
    • 0036121071 scopus 로고    scopus 로고
    • Synapses as dynamic memory buffers
    • Maass W., Markram H. Synapses as dynamic memory buffers. Neural Networks 2002, 15(2):155-161.
    • (2002) Neural Networks , vol.15 , Issue.2 , pp. 155-161
    • Maass, W.1    Markram, H.2
  • 42
    • 0036834701 scopus 로고    scopus 로고
    • Real-time computing without stable states: a new framework for neural computation based on perturbations
    • Maass W., Natschlaeger T., Markram H. Real-time computing without stable states: a new framework for neural computation based on perturbations. Neural Computation 2002, 14(11):2531-2560.
    • (2002) Neural Computation , vol.14 , Issue.11 , pp. 2531-2560
    • Maass, W.1    Natschlaeger, T.2    Markram, H.3
  • 43
    • 0034244222 scopus 로고    scopus 로고
    • Neural systems as nonlinear filters
    • Maass W., Sontag E.D. Neural systems as nonlinear filters. Neural Computation 2000, 12(8):1743-1772.
    • (2000) Neural Computation , vol.12 , Issue.8 , pp. 1743-1772
    • Maass, W.1    Sontag, E.D.2
  • 44
    • 0037705272 scopus 로고    scopus 로고
    • Computing and learning with dynamic synapses
    • MIT Press
    • Maass W., Zador A.M. Computing and learning with dynamic synapses. Pulsed neural networks 1999, 321-336. MIT Press.
    • (1999) Pulsed neural networks , pp. 321-336
    • Maass, W.1    Zador, A.M.2
  • 45
    • 38949179110 scopus 로고    scopus 로고
    • Spike timing dependent plasticity finds the start of repeating patterns in continuous spike trains
    • Masquelier T., Guyonneau R., Thorpe S.J. Spike timing dependent plasticity finds the start of repeating patterns in continuous spike trains. PLoS ONE 2008, 3(1):e1377.
    • (2008) PLoS ONE , vol.3 , Issue.1
    • Masquelier, T.1    Guyonneau, R.2    Thorpe, S.J.3
  • 46
    • 68849101118 scopus 로고    scopus 로고
    • Competitive STDP-based spike pattern learning
    • Masquelier T., Guyonneau R., Thorpe S.J. Competitive STDP-based spike pattern learning. Neural Computation 2009, 21(5):1259-1276.
    • (2009) Neural Computation , vol.21 , Issue.5 , pp. 1259-1276
    • Masquelier, T.1    Guyonneau, R.2    Thorpe, S.J.3
  • 48
    • 60149108117 scopus 로고    scopus 로고
    • Real-time classification of complex patterns using spike-based learning in neuromorphic VLSI
    • Mitra S., Fusi S., Indiveri G. Real-time classification of complex patterns using spike-based learning in neuromorphic VLSI. IEEE Transactions on Biomedical Circuits and Systems 2009, 3(1):32-42.
    • (2009) IEEE Transactions on Biomedical Circuits and Systems , vol.3 , Issue.1 , pp. 32-42
    • Mitra, S.1    Fusi, S.2    Indiveri, G.3
  • 49
    • 84855665544 scopus 로고    scopus 로고
    • A VLSI network of spiking neurons with an asynchronous static random access memory.
    • In Biomedical circuits and systems conference BIOCAS 2011.
    • Moradi, S., & Indiveri, G. (2011). A VLSI network of spiking neurons with an asynchronous static random access memory. In Biomedical circuits and systems conference BIOCAS 2011.
    • (2011)
    • Moradi, S.1    Indiveri, G.2
  • 50
    • 43949102027 scopus 로고    scopus 로고
    • Phenomenological models of synaptic plasticity based on spike timing
    • Morrison A., Diesmann M., Gerstner W. Phenomenological models of synaptic plasticity based on spike timing. Biological Cybernetics 2008, 98:459-478.
    • (2008) Biological Cybernetics , vol.98 , pp. 459-478
    • Morrison, A.1    Diesmann, M.2    Gerstner, W.3
  • 53
    • 0038215384 scopus 로고    scopus 로고
    • Clinical application of an EEG -based brain-computer interface: a case study in a patient with severe motor impairment
    • Neuper C., Muller G., Kubler A., Birbaumer N., Pfurtscheller G. Clinical application of an EEG -based brain-computer interface: a case study in a patient with severe motor impairment. Clinical Neurophysiology 2003, 114(3):399-409.
    • (2003) Clinical Neurophysiology , vol.114 , Issue.3 , pp. 399-409
    • Neuper, C.1    Muller, G.2    Kubler, A.3    Birbaumer, N.4    Pfurtscheller, G.5
  • 54
    • 81855172099 scopus 로고    scopus 로고
    • EEG classification with BSA spike encoding algorithm and evolving probabilistic spiking neural network
    • Springer, Heidelberg, Proc. 18th int. conf. on neural information processing, ICONIP, 2011, Shanghai, China
    • Nuntalid N., Dhoble K., Kasabov N. EEG classification with BSA spike encoding algorithm and evolving probabilistic spiking neural network. LNCS 2011, vol. 7062:451-460. Springer, Heidelberg.
    • (2011) LNCS , vol.7062 , pp. 451-460
    • Nuntalid, N.1    Dhoble, K.2    Kasabov, N.3
  • 56
    • 68149171764 scopus 로고    scopus 로고
    • Integrated feature and parameter optimization for evolving spiking neural networks: exploring heterogeneous probabilistic models
    • Schliebs S., Defoin-Platel M., Worner S., Kasabov N. Integrated feature and parameter optimization for evolving spiking neural networks: exploring heterogeneous probabilistic models. Neural Networks 2009, 22:623-632.
    • (2009) Neural Networks , vol.22 , pp. 623-632
    • Schliebs, S.1    Defoin-Platel, M.2    Worner, S.3    Kasabov, N.4
  • 57
    • 84867677772 scopus 로고    scopus 로고
    • Constructing robust liquid state machines to process highly variable data streams
    • Springer, A. Vila (Ed.) ICANN 2012
    • Schliebs S., Fiasch'e M., Kasabov N. Constructing robust liquid state machines to process highly variable data streams. LNCS 2012, vol. 7552:604-611. Springer. A. Vila (Ed.).
    • (2012) LNCS , vol.7552 , pp. 604-611
    • Schliebs, S.1    Fiasch'e, M.2    Kasabov, N.3
  • 58
    • 81855177534 scopus 로고    scopus 로고
    • A reservoir-based evolving spiking neural network for on-line spatio-temporal pattern learning and recognition, Neural Information Processing
    • Springer, Shanghai, China, Heidelberg, Proc. 18th int. conf. neural information processing
    • Schliebs S., Hamed H.N.A., Kasabov N. A reservoir-based evolving spiking neural network for on-line spatio-temporal pattern learning and recognition, Neural Information Processing. LNCS 2011, vol. 7063:160-168. Springer, Shanghai, China, Heidelberg.
    • (2011) LNCS , vol.7063 , pp. 160-168
    • Schliebs, S.1    Hamed, H.N.A.2    Kasabov, N.3
  • 62
    • 78649583381 scopus 로고    scopus 로고
    • Knowledge extraction from evolving spiking neural networks with rank order population coding
    • Soltic S., Kasabov N. Knowledge extraction from evolving spiking neural networks with rank order population coding. International Journal of Neural Systems 2010, 20(6):437-445.
    • (2010) International Journal of Neural Systems , vol.20 , Issue.6 , pp. 437-445
    • Soltic, S.1    Kasabov, N.2
  • 63
    • 38149141012 scopus 로고    scopus 로고
    • Inferring cognition from fMRI brain images
    • Springer, J.M. de Sá, L.A. Alexandre, W. Duch, D.P. Mandic (Eds.) ICANN 2007
    • Sona D., Veeramachaneni S., Olivetti E., Avesani P. Inferring cognition from fMRI brain images. LNCS 2007, vol. 4669:869-878. Springer. J.M. de Sá, L.A. Alexandre, W. Duch, D.P. Mandic (Eds.).
    • (2007) LNCS , vol.4669 , pp. 869-878
    • Sona, D.1    Veeramachaneni, S.2    Olivetti, E.3    Avesani, P.4
  • 64
    • 0033860923 scopus 로고    scopus 로고
    • Competitive Hebbian learning through spike-timing-dependent synaptic plasticity
    • Song S., Miller K., Abbott L., et al. Competitive Hebbian learning through spike-timing-dependent synaptic plasticity. Nature Neuroscience 2000, 3:919-926.
    • (2000) Nature Neuroscience , vol.3 , pp. 919-926
    • Song, S.1    Miller, K.2    Abbott, L.3
  • 65
    • 24144488240 scopus 로고    scopus 로고
    • Electroencephalogram-based control of an electric wheelchair
    • Tanaka K., Matsunaga K., Wang H. Electroencephalogram-based control of an electric wheelchair. IEEE Transactions on Robotics 2005, 21(4):762-766.
    • (2005) IEEE Transactions on Robotics , vol.21 , Issue.4 , pp. 762-766
    • Tanaka, K.1    Matsunaga, K.2    Wang, H.3
  • 66
    • 65249168689 scopus 로고    scopus 로고
    • The speed of categorization in the human visual system
    • Thorpe S.J. The speed of categorization in the human visual system. Neuron 2009, 62(2):168-170.
    • (2009) Neuron , vol.62 , Issue.2 , pp. 168-170
    • Thorpe, S.J.1
  • 67
    • 84867698490 scopus 로고    scopus 로고
    • Spike-based image processing: can we reproduce biological vision in hardware
    • Thorpe S.J. Spike-based image processing: can we reproduce biological vision in hardware. Lecture Notes in Computer Science 2012, vol. 7583:516-521.
    • (2012) Lecture Notes in Computer Science , vol.7583 , pp. 516-521
    • Thorpe, S.J.1
  • 74
    • 84875901151 scopus 로고    scopus 로고
    • Mobile robots' target-reaching controller based on spiking neural networks
    • Springer, Qatar, Proc. ICONIP 2012
    • Wang X., Hou Z.-G., Tan M., Wang Y., Lv F., Kasabov N. Mobile robots' target-reaching controller based on spiking neural networks. LNCS 2012, Springer, Qatar.
    • (2012) LNCS
    • Wang, X.1    Hou, Z.-G.2    Tan, M.3    Wang, Y.4    Lv, F.5    Kasabov, N.6
  • 77
    • 77955058561 scopus 로고    scopus 로고
    • Evolving spiking neural networks for audiovisual information processing
    • Wysoski S., Benuskova L., Kasabov N. Evolving spiking neural networks for audiovisual information processing. Neural Networks 2010, 23(7):819-835.
    • (2010) Neural Networks , vol.23 , Issue.7 , pp. 819-835
    • Wysoski, S.1    Benuskova, L.2    Kasabov, N.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.