메뉴 건너뛰기




Volumn 20, Issue 6, 2010, Pages 481-500

On the probabilistic optimization of spiking neural networks

Author keywords

Estimation of Distribution Algorithms; evolutionary algorithms; heterogeneous optimization algorithms; Multi Model EDA; Spiking Neural Network

Indexed keywords

APPROPRIATE TOPOLOGY; BENCH-MARK PROBLEMS; ESTIMATION OF DISTRIBUTION ALGORITHMS; EXPERIMENTAL ANALYSIS; HETEROGENEOUS OPTIMIZATION ALGORITHMS; INTERNAL PARAMETERS; LIGHT WEIGHT; LITERATURE REVIEWS; MULTI-MODEL; OPTIMIZATION ALGORITHMS; OPTIMIZATION METHOD; PRACTICAL GUIDELINES; PROBABILISTIC OPTIMIZATION; SEARCH SPACES; SPIKING NEURAL NETWORKS;

EID: 78649588368     PISSN: 01290657     EISSN: None     Source Type: Journal    
DOI: 10.1142/S0129065710002565     Document Type: Article
Times cited : (39)

References (59)
  • 1
    • 0004825357 scopus 로고    scopus 로고
    • Computing with spiking neurons
    • MIT Press, Cambridge, MA, USA
    • W. Maass, Computing with spiking neurons, in Pulsed Neural Networks (MIT Press, Cambridge, MA, USA, 1999), pp. 55-85.
    • (1999) Pulsed Neural Networks , pp. 55-85
    • Maass, W.1
  • 5
    • 84887006095 scopus 로고    scopus 로고
    • Isolated word recognition using a liquid state machine
    • D. Verstraeten, B. Schrauwen and D. Stroobandt, Isolated word recognition using a liquid state machine, in ESANN (2005), pp. 435-440.
    • (2005) ESANN , pp. 435-440
    • Verstraeten, D.1    Schrauwen, B.2    Stroobandt, D.3
  • 6
    • 0036826068 scopus 로고    scopus 로고
    • Error-backpropagation in temporally encoded networks of spiking neurons
    • S. M. Bohte, J. N. Kok and J. A. L. Poutré, Error-backpropagation in temporally encoded networks of spiking neurons, Neurocomputing 48(1-4) (2002) 17-37.
    • (2002) Neurocomputing , vol.48 , Issue.1-4 , pp. 17-37
    • Bohte, S.M.1    Kok, J.N.2    Poutré, J.A.L.3
  • 7
    • 33646736422 scopus 로고    scopus 로고
    • ReSuMe-new supervised learning method for spiking neural networks
    • Poznań University of Technology, Poznań, Poland
    • F. Ponulak, ReSuMe-new supervised learning method for spiking neural networks, Tech. Rep., Institute of Control and Information Engineering, Poznań University of Technology, Poznań, Poland (2005).
    • (2005) Tech. Rep., Institute of Control and Information Engineering
    • Ponulak, F.1
  • 8
    • 23844451054 scopus 로고    scopus 로고
    • Neural associative memory for brain modeling and information retrieval
    • A. Knoblauch, Neural associative memory for brain modeling and information retrieval. Inf. Process. Lett. 95(6) (2005) 537-544.
    • (2005) Inf. Process. Lett. , vol.95 , Issue.6 , pp. 537-544
    • Knoblauch, A.1
  • 9
    • 23844470903 scopus 로고    scopus 로고
    • Finding iterative roots with a spiking neural network
    • N. Iannella and L. Kindermann, Finding iterative roots with a spiking neural network, Information Processing Letters 95(6) (2005) 545-551.
    • (2005) Information Processing Letters , vol.95 , Issue.6 , pp. 545-551
    • Iannella, N.1    Kindermann, L.2
  • 10
    • 51449107175 scopus 로고    scopus 로고
    • Emergence of preferred firing sequences in large spiking neural networks during simulated neuronal development
    • J. Iglesias and A. E. Villa, Emergence of preferred firing sequences in large spiking neural networks during simulated neuronal development, Int. J. Neural Syst. 18(4) (2008) 267-277.
    • (2008) Int. J. Neural Syst. , vol.18 , Issue.4 , pp. 267-277
    • Iglesias, J.1    Villa, A.E.2
  • 11
    • 73949116275 scopus 로고    scopus 로고
    • Chaos-based mixed signal implementation of spiking neurons
    • J. L. Rosselló, V. Canals, A. Morro and J. Verd, Chaos-based mixed signal implementation of spiking neurons. Int. J. Neural Syst. 19(6) (2009) 465-471.
    • (2009) Int. J. Neural Syst. , vol.19 , Issue.6 , pp. 465-471
    • Rosselló, J.L.1    Canals, V.2    Morro, A.3    Verd, J.4
  • 12
    • 34547597104 scopus 로고    scopus 로고
    • Improved spiking neural networks for EEG classification and epilepsy and seizure detection
    • S. Ghosh-Dastidar and H. Adeli, Improved spiking neural networks for EEG classification and epilepsy and seizure detection, Integr. Comput.-Aided Eng. 14(3) (2007) 187-212.
    • (2007) Integr. Comput.-Aided Eng. , vol.14 , Issue.3 , pp. 187-212
    • Ghosh-Dastidar, S.1    Adeli, H.2
  • 13
    • 71049128082 scopus 로고    scopus 로고
    • A new supervised learning algorithm for multiple spiking neural networks with application in epilepsy and seizure detection
    • S. Ghosh-Dastidar and H. Adeli, A new supervised learning algorithm for multiple spiking neural networks with application in epilepsy and seizure detection, Neural Networks 22(10) (2009) 1419-1431.
    • (2009) Neural Networks , vol.22 , Issue.10 , pp. 1419-1431
    • Ghosh-Dastidar, S.1    Adeli, H.2
  • 15
    • 36849000183 scopus 로고    scopus 로고
    • Evolving neural network topologies for object recognition
    • WAC'06, IEEE, Budapest, Hungary
    • C. Taylor and A. Agah, Evolving neural network topologies for object recognition, in Automation Congress, 2006. WAC'06, IEEE, Budapest, Hungary (2006), pp. 1-6.
    • (2006) Automation Congress, 2006 , pp. 1-6
    • Taylor, C.1    Agah, A.2
  • 16
    • 68149171764 scopus 로고    scopus 로고
    • Integrated feature and parameter optimization for an evolving spiking neural network: Exploring heterogeneous probabilistic models
    • S. Schliebs, M. Defoin-Platel, S. Worner and N. Kasabov, Integrated feature and parameter optimization for an evolving spiking neural network: Exploring heterogeneous probabilistic models, Neural Networks 22(5-6) (2009) 623-632.
    • (2009) Neural Networks , vol.22 , Issue.5-6 , pp. 623-632
    • Schliebs, S.1    Defoin-Platel, M.2    Worner, S.3    Kasabov, N.4
  • 18
    • 0028336556 scopus 로고
    • Genetic evolution of the topology and weight distribution of neural networks
    • V. Maniezzo, Genetic evolution of the topology and weight distribution of neural networks, IEEE Transactions on Neural Networks 5(1) (1994) 39-53.
    • (1994) IEEE Transactions on Neural Networks , vol.5 , Issue.1 , pp. 39-53
    • Maniezzo, V.1
  • 19
    • 0037276988 scopus 로고    scopus 로고
    • Tuning of the structure and parameters of a neural network using an improved genetic algorithm
    • F. Leung, H. Lam, S. Ling and P. Tam, Tuning of the structure and parameters of a neural network using an improved genetic algorithm, IEEE Transactions on Neural Networks 14(1) (2003) 79-88.
    • (2003) IEEE Transactions on Neural Networks , vol.14 , Issue.1 , pp. 79-88
    • Leung, F.1    Lam, H.2    Ling, S.3    Tam, P.4
  • 22
    • 84943234345 scopus 로고
    • Design architectures and training of neural networks with a distributed genetic algorithm
    • S. Oliker, M. Furst and O. Maimon, Design architectures and training of neural networks with a distributed genetic algorithm, in IEEE International Conference on Neural Networks, Vol. 1 (1993), pp. 199-202.
    • (1993) IEEE International Conference on Neural Networks , vol.1 , pp. 199-202
    • Oliker, S.1    Furst, M.2    Maimon, O.3
  • 23
    • 0028546422 scopus 로고
    • A parallel genetic/neural network learning algorithm for MIMD shared memory machines
    • S. Hung and H. Adeli, A parallel genetic/neural network learning algorithm for MIMD shared memory machines, Neural Networks, IEEE Transactions 5(6) (1994) 900-909.
    • (1994) Neural Networks, IEEE Transactions , vol.5 , Issue.6 , pp. 900-909
    • Hung, S.1    Adeli, H.2
  • 25
    • 71049192845 scopus 로고    scopus 로고
    • FeaSANNT - An embedded evolutionary feature selection approach for neural network classifiers
    • M. Castellani and N. Marques, FeaSANNT - An embedded evolutionary feature selection approach for neural network classifiers, VIMation Journal 1 (2008) 46-53.
    • (2008) VIMation Journal , vol.1 , pp. 46-53
    • Castellani, M.1    Marques, N.2
  • 26
    • 67349281255 scopus 로고    scopus 로고
    • Evolutionary artificial neural network design and training for wood veneer classification
    • M. Castellani and H. Rowlands, Evolutionary artificial neural network design and training for wood veneer classification, Engineering Applications of Artificial Intelligence 22(4-5) (2009) 732-741.
    • (2009) Engineering Applications of Artificial Intelligence , vol.22 , Issue.4-5 , pp. 732-741
    • Castellani, M.1    Rowlands, H.2
  • 27
    • 34547315116 scopus 로고    scopus 로고
    • ANNE - A new algorithm for evolution of artificial neural network classifier systems
    • CEC'06
    • M. Castellani, ANNE - A new algorithm for evolution of artificial neural network classifier systems, in IEEE Congress on Evolutionary Computation, CEC'06 (2006), pp. 3294-3301.
    • (2006) IEEE Congress on Evolutionary Computation , pp. 3294-3301
    • Castellani, M.1
  • 29
    • 70449408976 scopus 로고    scopus 로고
    • Design of artificial neural networks using a modified particle swarm optimization algorithm
    • IEEE - INNS -ENNS
    • B. A. Garro, H. Sossa and R. A. Vazquez, Design of artificial neural networks using a modified particle swarm optimization algorithm, International Joint Conference on Neural Networks, IEEE - INNS -ENNS (2009), pp. 938-945.
    • (2009) International Joint Conference on Neural Networks , pp. 938-945
    • Garro, B.A.1    Sossa, H.2    Vazquez, R.A.3
  • 30
    • 4344665813 scopus 로고    scopus 로고
    • Estimation of distribution algorithm for mixed continuous-discrete optimization problems
    • IOS Press, Kosice, Slovakia
    • J. Ocenasek and J. Schwarz, Estimation of distribution algorithm for mixed continuous-discrete optimization problems, in 2nd Euro-International Symposium on Computational Intelligence, IOS Press, Kosice, Slovakia (2002), pp. 227-232.
    • (2002) 2nd Euro-International Symposium on Computational Intelligence , pp. 227-232
    • Ocenasek, J.1    Schwarz, J.2
  • 31
    • 4344707250 scopus 로고    scopus 로고
    • Learning probability distributions in continuous evolutionary algorithms - A comparative review
    • S. Kern, S. Müller, N. Hansen, D. Büche, J. Ocenasek and P. Koumoutsakos, Learning probability distributions in continuous evolutionary algorithms - a comparative review, Natural Computing 3(1) (2004) 77-112.
    • (2004) Natural Computing , vol.3 , Issue.1 , pp. 77-112
    • Kern, S.1    Müller, S.2    Hansen, N.3    Büche, D.4    Ocenasek, J.5    Koumoutsakos, P.6
  • 32
    • 7744230526 scopus 로고    scopus 로고
    • Ph.D. thesis, Faculty of Information Technology, Brno University of Technology, Brno, Czech Rep.
    • J. Ocenasek, Parallel estimation of distribution algorithms. Ph.D. thesis, Faculty of Information Technology, Brno University of Technology, Brno, Czech Rep. (2002).
    • (2002) Parallel Estimation of Distribution Algorithms
    • Ocenasek, J.1
  • 40
    • 0031381525 scopus 로고    scopus 로고
    • Wrappers for feature subset selection
    • R. Kohavi and G. H. John, Wrappers for feature subset selection, Artificial Intelligence 97(1-2) (1997) 273-324.
    • (1997) Artificial Intelligence , vol.97 , Issue.1-2 , pp. 273-324
    • Kohavi, R.1    John, G.H.2
  • 41
    • 68149182835 scopus 로고    scopus 로고
    • Quantum-inspired feature and parameter optimisation of evolving spiking neural networks with a case study from ecological modeling
    • IEEE - INNS - ENNS, IEEE Computer Society, Los Alamitos, CA, USA
    • S. Schliebs, M. Defoin-Platel, S. Worner and N. Kasabov, Quantum-inspired feature and parameter optimisation of evolving spiking neural networks with a case study from ecological modeling, in International Joint Conference on Neural Networks, IEEE - INNS - ENNS, IEEE Computer Society, Los Alamitos, CA, USA (2009), pp. 2833-2840.
    • (2009) International Joint Conference on Neural Networks , pp. 2833-2840
    • Schliebs, S.1    Defoin-Platel, M.2    Worner, S.3    Kasabov, N.4
  • 42
    • 79959453897 scopus 로고    scopus 로고
    • Analyzing the dynamics of the simultaneous feature and parameter optimization of an evolving spiking neural network
    • IEEE - INNS - ENNS, IEEE Computer Society, Barcelona, Spain
    • S. Schliebs, M. Defoin-Platel and N. Kasabov, Analyzing the dynamics of the simultaneous feature and parameter optimization of an evolving spiking neural network, in International Joint Conference on Neural Networks, IEEE - INNS - ENNS, IEEE Computer Society, Barcelona, Spain (2010).
    • (2010) International Joint Conference on Neural Networks
    • Schliebs, S.1    Defoin-Platel, M.2    Kasabov, N.3
  • 45
    • 0001878857 scopus 로고
    • Efficient simulation from the multivariate normal and student-t distributions subject to linear constraints and the evaluation of constraint probabilities
    • American Statistical Association, New York, Seattle, Washington
    • J. Geweke, Efficient simulation from the multivariate normal and student-t distributions subject to linear constraints and the evaluation of constraint probabilities, in Computing Science and Statistics: Proceedings of the 23rd Symposium on the Interface, American Statistical Association, New York, Seattle, Washington (1991), pp. 571-578.
    • (1991) Computing Science and Statistics: Proceedings of the 23rd Symposium on the Interface , pp. 571-578
    • Geweke, J.1
  • 46
    • 84901398730 scopus 로고    scopus 로고
    • On setting the parameters of quantum-inspired evolutionary algorithm for practical application
    • CEC'03 IEEE Press, Canberra, Australia
    • K.-H. Han and J.-H. Kim, On setting the parameters of quantum-inspired evolutionary algorithm for practical application, in Congress on Evolutionary Computation, CEC'03, Vol. 1, IEEE Press, Canberra, Australia (2003), pp. 178-194.
    • (2003) Congress on Evolutionary Computation , vol.1 , pp. 178-194
    • Han, K.-H.1    Kim, J.-H.2
  • 47
    • 0031650013 scopus 로고    scopus 로고
    • Domino convergence, drift, and the temporal-salience structure of problems
    • IEEE World Congress on Computational Intelligence, IEEE Press
    • D. Thierens, D. Goldberg and A. Pereira, Domino convergence, drift, and the temporal-salience structure of problems, in Evolutionary Computation Proceedings, 1998. IEEE World Congress on Computational Intelligence, IEEE Press (1998), pp. 535-540.
    • (1998) Evolutionary Computation Proceedings, 1998 , pp. 535-540
    • Thierens, D.1    Goldberg, D.2    Pereira, A.3
  • 50
    • 84958959530 scopus 로고    scopus 로고
    • From Recombination of Genes to the Estimation of Distributions: I. Binary Parameters
    • Parallel Problem Solving from Nature - PPSN IV
    • H. Mühlenbein and G. Paass, From recombination of genes to the estimation of distributions I. binary parameters, in PPSN (1996), pp. 178-187. (Pubitemid 126128306)
    • (1996) LECTURE NOTES IN COMPUTER SCIENCE , Issue.1141 , pp. 178-187
    • Muehlenbein, H.1    Paass, G.2
  • 51
    • 0003984832 scopus 로고
    • Population-based incremental learning: A method for integrating genetic search based function optimization and competitive learning
    • Pittsburgh, PA
    • S. Baluja, Population-based incremental learning: A method for integrating genetic search based function optimization and competitive learning, Tech. Rep. CMU-CS-94-163, Carnegie Mellon University, Pittsburgh, PA (1994).
    • (1994) Tech. Rep. CMU-CS-94-163, Carnegie Mellon University
    • Baluja, S.1
  • 53
    • 0002152569 scopus 로고
    • Genetic algorithms for numerical optimization
    • Z. Michalewicz and C. Z. Janikow, Genetic algorithms for numerical optimization, Statistics and Computing 1(2) (1991) 75-91.
    • (1991) Statistics and Computing , vol.1 , Issue.2 , pp. 75-91
    • Michalewicz, Z.1    Janikow, C.Z.2
  • 54
    • 27144539455 scopus 로고    scopus 로고
    • Performance evaluation of an advanced local search evolutionary algorithm
    • IEEE Press
    • A. Auger and N. Hansen, Performance evaluation of an advanced local search evolutionary algorithm, in IEEE Congress on Evolutionary Computation, IEEE Press, Vol. 2 (2005), pp. 1777-1784.
    • (2005) IEEE Congress on Evolutionary Computation , vol.2 , pp. 1777-1784
    • Auger, A.1    Hansen, N.2
  • 56
    • 0034153728 scopus 로고    scopus 로고
    • Cooperative coevo-lution, an architecture for evolving coadapted subcomponents
    • M. A. Potter and K. A. D. Jong, Cooperative coevo-lution, An architecture for evolving coadapted subcomponents, Evolutionary Computation 8 (2000) 1-29.
    • (2000) Evolutionary Computation , vol.8 , pp. 1-29
    • Potter, M.A.1    Jong, K.A.D.2
  • 57
    • 70649084995 scopus 로고    scopus 로고
    • To spike or not to spike: A probabilistic spiking neuron model
    • N. Kasabov, To spike or not to spike: A probabilistic spiking neuron model, Neural Networks 23(1) (2010) 16-19.
    • (2010) Neural Networks , vol.23 , Issue.1 , pp. 16-19
    • Kasabov, N.1
  • 59
    • 33746403364 scopus 로고    scopus 로고
    • Computational neurogenetic modeling: A pathway to new discoveries in genetic neuro-science
    • L. Benuskova, V. Jain, S. G. Wysoski and N. Kasabov, Computational neurogenetic modeling: A pathway to new discoveries in genetic neuro-science, Intl. Journal of Neural Systems 16(3) (2006) 215-227.
    • (2006) Intl. Journal of Neural Systems , vol.16 , Issue.3 , pp. 215-227
    • Benuskova, L.1    Jain, V.2    Wysoski, S.G.3    Kasabov, N.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.