메뉴 건너뛰기




Volumn 8, Issue 4, 2013, Pages

t-LSE: A Novel Robust Geometric Approach for Modeling Protein-Protein Interaction Networks

Author keywords

[No Author keywords available]

Indexed keywords

ARTICLE; DROSOPHILA MELANOGASTER; GEOMETRY; HUMAN; MACHINE LEARNING; MATHEMATICAL COMPUTING; MATHEMATICAL MODEL; NONHUMAN; PROTEIN PROTEIN INTERACTION; SACCHAROMYCES CEREVISIAE; T LOGISTIC SEMANTIC EMBEDDING;

EID: 84875669119     PISSN: None     EISSN: 19326203     Source Type: Journal    
DOI: 10.1371/journal.pone.0058368     Document Type: Article
Times cited : (82)

References (51)
  • 2
    • 0037050026 scopus 로고    scopus 로고
    • Functional organization of the yeast proteome by systematic analysis of protein complexes
    • Gavin AC, Bosche M, Krause R, Grandi P, Marzioch M, et al. (2002) Functional organization of the yeast proteome by systematic analysis of protein complexes. Nature 415: 141-147.
    • (2002) Nature , vol.415 , pp. 141-147
    • Gavin, A.C.1    Bosche, M.2    Krause, R.3    Grandi, P.4    Marzioch, M.5
  • 3
    • 0037050004 scopus 로고    scopus 로고
    • Systematic identification of protein complexes in saccharomyces cerevisiae by mass spectrometry
    • Ho Y, Gruhler A, Heilbut A, Bader GD, Moore L, et al. (2002) Systematic identification of protein complexes in saccharomyces cerevisiae by mass spectrometry. Nature 415: 180-183.
    • (2002) Nature , vol.415 , pp. 180-183
    • Ho, Y.1    Gruhler, A.2    Heilbut, A.3    Bader, G.D.4    Moore, L.5
  • 4
    • 79952674000 scopus 로고    scopus 로고
    • Interactome networks and human disease
    • Vidal M, Cusick ME, Barabasi AL, (2011) Interactome networks and human disease. Cell 144: 986-998.
    • (2011) Cell , vol.144 , pp. 986-998
    • Vidal, M.1    Cusick, M.E.2    Barabasi, A.L.3
  • 5
    • 33645453254 scopus 로고    scopus 로고
    • Global landscape of protein complexes in the yeast saccharomyces cerevisiae
    • Krogan NJ, Cagney G, Yu HY, Zhong GQ, Guo XH, et al. (2006) Global landscape of protein complexes in the yeast saccharomyces cerevisiae. Nature 440: 637-643.
    • (2006) Nature , vol.440 , pp. 637-643
    • Krogan, N.J.1    Cagney, G.2    Yu, H.Y.3    Zhong, G.Q.4    Guo, X.H.5
  • 6
    • 0034628508 scopus 로고    scopus 로고
    • A comprehensive analysis of protein-protein interactions in saccharomyces cerevisiae
    • Uetz P, Giot L, Cagney G, Mansfield TA, Judson RS, et al. (2000) A comprehensive analysis of protein-protein interactions in saccharomyces cerevisiae. Nature 403: 623-627.
    • (2000) Nature , vol.403 , pp. 623-627
    • Uetz, P.1    Giot, L.2    Cagney, G.3    Mansfield, T.A.4    Judson, R.S.5
  • 7
    • 0345600247 scopus 로고    scopus 로고
    • A protein interaction map of drosophila melanogaster
    • Giot L, Bader JS, Brouwer C, Chaudhuri A, Kuang B, et al. (2003) A protein interaction map of drosophila melanogaster. Science 302: 1727-1736.
    • (2003) Science , vol.302 , pp. 1727-1736
    • Giot, L.1    Bader, J.S.2    Brouwer, C.3    Chaudhuri, A.4    Kuang, B.5
  • 12
    • 77958498250 scopus 로고    scopus 로고
    • Using manifold embedding for assessing and predicting protein interactions from high-throughput experimental data
    • You ZH, Lei YK, Gui J, Huang DS, Zhou XB, (2010) Using manifold embedding for assessing and predicting protein interactions from high-throughput experimental data. Bioinformatics 26: 2744-2751.
    • (2010) Bioinformatics , vol.26 , pp. 2744-2751
    • You, Z.H.1    Lei, Y.K.2    Gui, J.3    Huang, D.S.4    Zhou, X.B.5
  • 13
    • 33745619564 scopus 로고    scopus 로고
    • Exploiting indirect neighbours and topological weight to predict protein function from protein-protein interactions
    • Chua HN, Sung WK, Wong L, (2006) Exploiting indirect neighbours and topological weight to predict protein function from protein-protein interactions. Bioinformatics 22: 1623-1630.
    • (2006) Bioinformatics , vol.22 , pp. 1623-1630
    • Chua, H.N.1    Sung, W.K.2    Wong, L.3
  • 14
    • 1442329655 scopus 로고    scopus 로고
    • Functional classification of proteins for the prediction of cellular function from a protein-protein interaction network
    • Brun C, Chevenet F, Martin D, Wojcik J, Guenoche A, et al. (2003) Functional classification of proteins for the prediction of cellular function from a protein-protein interaction network. Genome Biology 5: 6-6.
    • (2003) Genome Biology , vol.5 , pp. 6
    • Brun, C.1    Chevenet, F.2    Martin, D.3    Wojcik, J.4    Guenoche, A.5
  • 15
    • 41949139082 scopus 로고    scopus 로고
    • Fitting a geometric graph to a protein-protein interaction network
    • Higham DJ, Rasajski M, Przulji N, (2008) Fitting a geometric graph to a protein-protein interaction network. Bioinformatics 24: 1093-1099.
    • (2008) Bioinformatics , vol.24 , pp. 1093-1099
    • Higham, D.J.1    Rasajski, M.2    Przulji, N.3
  • 16
    • 0346725930 scopus 로고    scopus 로고
    • Unraveling protein interaction networks with near-optimal efficiency
    • Lappe M, Holm L, (2004) Unraveling protein interaction networks with near-optimal efficiency. Nature Biotechnology 22: 98-103.
    • (2004) Nature Biotechnology , vol.22 , pp. 98-103
    • Lappe, M.1    Holm, L.2
  • 18
    • 0000664045 scopus 로고
    • The asymptotic number of labeled graphs with given degree sequences
    • Bender EA, Canfield ER, (1978) The asymptotic number of labeled graphs with given degree sequences. Journal of Combinatorial Theory 24: 296-307.
    • (1978) Journal of Combinatorial Theory , vol.24 , pp. 296-307
    • Bender, E.A.1    Canfield, E.R.2
  • 19
    • 0032482432 scopus 로고    scopus 로고
    • Collective dynamics of 'small-world' networks
    • Watts DJ, Strogatz SH, (1998) Collective dynamics of 'small-world' networks. Nature 393: 440-442.
    • (1998) Nature , vol.393 , pp. 440-442
    • Watts, D.J.1    Strogatz, S.H.2
  • 20
    • 0038483826 scopus 로고    scopus 로고
    • Emergence of scaling in random networks
    • Barabasi AL, Albert R, (1999) Emergence of scaling in random networks. Science 286: 509-512.
    • (1999) Science , vol.286 , pp. 509-512
    • Barabasi, A.L.1    Albert, R.2
  • 21
    • 33750630691 scopus 로고    scopus 로고
    • Modelling protein-protein interaction networks via a stickiness index
    • Przulj N, Higham DJ, (2006) Modelling protein-protein interaction networks via a stickiness index. Journal of the Royal Society Interface 3: 711-716.
    • (2006) Journal of the Royal Society Interface , vol.3 , pp. 711-716
    • Przulj, N.1    Higham, D.J.2
  • 23
    • 12344273375 scopus 로고    scopus 로고
    • Modeling interactome: scale-free or geometric?
    • Przulj N, Corneil DG, Jurisica I, (2004) Modeling interactome: scale-free or geometric? Bioinformatics 20: 3508-3515.
    • (2004) Bioinformatics , vol.20 , pp. 3508-3515
    • Przulj, N.1    Corneil, D.G.2    Jurisica, I.3
  • 24
  • 25
    • 61949371427 scopus 로고    scopus 로고
    • Learning the structure of protein-protein interaction networks
    • Kuchaiev O, Przulj N (2009) Learning the structure of protein-protein interaction networks. Pacific Symposium on Biocomputing: 39-50.
    • (2009) Pacific Symposium on Biocomputing , pp. 39-50
    • Kuchaiev, O.1    Przulj, N.2
  • 27
    • 79955787030 scopus 로고    scopus 로고
    • Global geometric affinity for revealing high fidelity protein interaction network
    • Fang Y, Benjamin W, Sun MT, Ramani K, (2011) Global geometric affinity for revealing high fidelity protein interaction network. Plos One 6: e19349.
    • (2011) Plos One , vol.6
    • Fang, Y.1    Benjamin, W.2    Sun, M.T.3    Ramani, K.4
  • 31
  • 33
    • 0037059461 scopus 로고    scopus 로고
    • A combined experimental and computational strategy to define protein interaction networks for peptide recognition modules
    • Tong AHY, Drees B, Nardelli G, Bader GD, Brannetti B, et al. (2002) A combined experimental and computational strategy to define protein interaction networks for peptide recognition modules. Science 295: 321-324.
    • (2002) Science , vol.295 , pp. 321-324
    • Tong, A.H.Y.1    Drees, B.2    Nardelli, G.3    Bader, G.D.4    Brannetti, B.5
  • 35
    • 77956496698 scopus 로고    scopus 로고
    • How threshold behaviour affects the use of subgraphs for network comparison
    • Rito T, Wang Z, Deane CM, Reinert G, (2010) How threshold behaviour affects the use of subgraphs for network comparison. Bioinformatics 26: i611-i617.
    • (2010) Bioinformatics , vol.26
    • Rito, T.1    Wang, Z.2    Deane, C.M.3    Reinert, G.4
  • 36
    • 33846672214 scopus 로고    scopus 로고
    • Biological network comparison using graphlet degree distribution
    • Pržulj N, (2007) Biological network comparison using graphlet degree distribution. Bioinformatics 23: e177-e183.
    • (2007) Bioinformatics , vol.23
    • Pržulj, N.1
  • 38
    • 0038718854 scopus 로고    scopus 로고
    • The structure and function of complex networks
    • Newman MEJ (2003) The structure and function of complex networks. SIAM Review: 167-256.
    • (2003) SIAM Review , pp. 167-256
    • Newman, M.E.J.1
  • 39
    • 0036493195 scopus 로고    scopus 로고
    • Interaction generality, a measurement to assess the reliability of a protein-protein interaction
    • Saito R, Suzuki H, Hayashizaki Y, (2002) Interaction generality, a measurement to assess the reliability of a protein-protein interaction. Nucleic Acids Research 30: 1163-1168.
    • (2002) Nucleic Acids Research , vol.30 , pp. 1163-1168
    • Saito, R.1    Suzuki, H.2    Hayashizaki, Y.3
  • 40
    • 0242500972 scopus 로고    scopus 로고
    • Construction of reliable protein-protein interaction networks with a new interaction generality measure
    • Saito R, Suzuki H, Hayashizaki Y, (2003) Construction of reliable protein-protein interaction networks with a new interaction generality measure. Bioinformatics 19: 756-763.
    • (2003) Bioinformatics , vol.19 , pp. 756-763
    • Saito, R.1    Suzuki, H.2    Hayashizaki, Y.3
  • 41
    • 48149084438 scopus 로고    scopus 로고
    • Increasing the reliability of protein interactomes
    • Chua HN, Wong L, (2008) Increasing the reliability of protein interactomes. Drug Discovery Today 13: 652-658.
    • (2008) Drug Discovery Today , vol.13 , pp. 652-658
    • Chua, H.N.1    Wong, L.2
  • 42
    • 0034628487 scopus 로고    scopus 로고
    • Guilt-by-association goes global
    • Oliver S, (2000) Guilt-by-association goes global. Nature 403: 601-603.
    • (2000) Nature , vol.403 , pp. 601-603
    • Oliver, S.1
  • 44
    • 83555170269 scopus 로고    scopus 로고
    • Random classification noise defeats all convex potential boosters
    • Long PM, Servedio RA, (2010) Random classification noise defeats all convex potential boosters. Machine Learning 78: 287-304.
    • (2010) Machine Learning , vol.78 , pp. 287-304
    • Long, P.M.1    Servedio, R.A.2
  • 47
    • 3042811704 scopus 로고    scopus 로고
    • Generalized thermostatistics based on deformed exponential and logarithmic functions
    • Naudts J, (2004) Generalized thermostatistics based on deformed exponential and logarithmic functions. Physica A-Statistical Mechanics and Its Applications 340: 32-40.
    • (2004) Physica A-Statistical Mechanics and Its Applications , vol.340 , pp. 32-40
    • Naudts, J.1
  • 50


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.