메뉴 건너뛰기




Volumn 2013, Issue 3, 2013, Pages

Statistical mechanics of complex neural systems and high dimensional data

Author keywords

cavity and replica method; computational neuroscience; message passing Algorithms; spin glasses (theory)

Indexed keywords


EID: 84875289428     PISSN: None     EISSN: 17425468     Source Type: Journal    
DOI: 10.1088/1742-5468/2013/03/P03014     Document Type: Article
Times cited : (85)

References (170)
  • 6
    • 4444384303 scopus 로고
    • Solvable model of a spin-glass
    • 10.1103/PhysRevLett.35.1792 0031-9007
    • Sherrington D and Kirkpatrick S 1975 Solvable model of a spin-glass Phys. Rev. Lett. 35 1792
    • (1975) Phys. Rev. Lett. , vol.35 , Issue.26 , pp. 1792
    • Sherrington, D.1    Kirkpatrick, S.2
  • 13
    • 11144273669 scopus 로고
    • The perceptron: A probabilistic model for information storage and organization in the brain
    • 10.1037/h0042519 0033-295X
    • Rosenblatt F 1958 The perceptron: a probabilistic model for information storage and organization in the brain Psychol. Rev. 65 386
    • (1958) Psychol. Rev. , vol.65 , Issue.6 , pp. 386
    • Rosenblatt, F.1
  • 14
    • 0000430986 scopus 로고
    • The perceptron: A model for brain functioning. i
    • 10.1103/RevModPhys.34.123 0034-6861
    • Block H D 1962 The perceptron: a model for brain functioning. i Rev. Mod. Phys. 34 123
    • (1962) Rev. Mod. Phys. , vol.34 , Issue.1 , pp. 123
    • Block, H.D.1
  • 15
    • 0026453958 scopus 로고
    • Training a 3-node neural network is np-complete
    • 10.1016/S0893-6080(05)80010-3 0893-6080
    • Blum A L and Rivest R L 1992 Training a 3-node neural network is np-complete Neural Netw. 5 117
    • (1992) Neural Netw. , vol.5 , Issue.1 , pp. 117
    • Blum, A.L.1    Rivest, R.L.2
  • 16
    • 0346648649 scopus 로고
    • On the complexity of training perceptrons
    • Amaldi E 1991 On the complexity of training perceptrons Artif. Neural Netw. 1 55
    • (1991) Artif. Neural Netw. , vol.1 , pp. 55
    • Amaldi, E.1
  • 17
    • 32644483897 scopus 로고    scopus 로고
    • Learning by message passing in networks of discrete synapses
    • DOI 10.1103/PhysRevLett.96.030201
    • Braunstein A and Zecchina R 2006 Learning by message passing in networks of discrete synapses Phys. Rev. Lett. 96 30201 (Pubitemid 43248077)
    • (2006) Physical Review Letters , vol.96 , Issue.3 , pp. 030201
    • Braunstein, A.1    Zecchina, R.2
  • 18
    • 84875330817 scopus 로고    scopus 로고
    • Efficient supervised learning in networks with binary synapses
    • 10.1186/1471-2202-8-S2-S13 1471-2202
    • Baldassi C, Braunstein A, Brunel N and Zecchina R 2007 Efficient supervised learning in networks with binary synapses BMC Neurosci. 8 S13
    • (2007) BMC Neurosci. , vol.8 , Issue.SUPPL. 2 , pp. 13
    • Baldassi, C.1    Braunstein, A.2    Brunel, N.3    Zecchina, R.4
  • 22
    • 0002125597 scopus 로고
    • The generalised product moment distribution in samples from a normal multivariate population
    • 0006-3444
    • Wishart J 1928 The generalised product moment distribution in samples from a normal multivariate population Biometrika 20 32
    • (1928) Biometrika , vol.20 , pp. 32
    • Wishart, J.1
  • 23
    • 0000263239 scopus 로고
    • Distribution of eigenvalues for some sets of random matrices
    • Marchenko V A and Pastur L A 1967 Distribution of eigenvalues for some sets of random matrices Matematicheskii Sbornik 114 507
    • (1967) Matematicheskii Sbornik , vol.114 , pp. 507
    • Marchenko, V.A.1    Pastur, L.A.2
  • 26
    • 38549129103 scopus 로고    scopus 로고
    • Large deviations of the maximum eigenvalue in Wishart random matrices
    • 10.1088/1751-8113/40/16/005 1751-8113
    • Vivo P, Majumdar S N and Bohigas O 2007 Large deviations of the maximum eigenvalue in Wishart random matrices J. Phys. A: Math. Theor. 40 4317
    • (2007) J. Phys. A: Math. Theor. , vol.40 , Issue.16 , pp. 4317
    • Vivo, P.1    Majumdar, S.N.2    Bohigas, O.3
  • 27
    • 61349158649 scopus 로고    scopus 로고
    • Large deviations of the maximum eigenvalue for Wishart and Gaussian random matrices
    • 10.1103/PhysRevLett.102.060601 0031-9007 60601
    • Majumdar S N and Vergassola M 2009 Large deviations of the maximum eigenvalue for Wishart and Gaussian random matrices Phys. Rev. Lett. 102 60601
    • (2009) Phys. Rev. Lett. , vol.102 , Issue.6
    • Majumdar, S.N.1    Vergassola, M.2
  • 28
    • 59749104367 scopus 로고    scopus 로고
    • From sparse solutions of systems of equations to sparse modeling of signals and images
    • 10.1137/060657704 0036-1445
    • Bruckstein A M, Donoho D L and Elad M 2009 From sparse solutions of systems of equations to sparse modeling of signals and images SIAM Rev. 51 34
    • (2009) SIAM Rev. , vol.51 , Issue.1 , pp. 34
    • Bruckstein, A.M.1    Donoho, D.L.2    Elad, M.3
  • 29
    • 85032750937 scopus 로고    scopus 로고
    • An introduction to compressive sampling: A sensing/sampling paradigm that goes against the common knowledge in data acquisition
    • DOI 10.1109/MSP.2007.914731
    • Candes E and Wakin M 2008 An introduction to compressive sampling IEEE Sig. Proc. Mag. 25 21 (Pubitemid 351513062)
    • (2008) IEEE Signal Processing Magazine , vol.25 , Issue.2 , pp. 21-30
    • Candes, E.J.1    Wakin, M.B.2
  • 30
    • 84862682946 scopus 로고    scopus 로고
    • Compressed sensing, sparsity, and dimensionality in neuronal information processing and data analysis
    • 10.1146/annurev-neuro-062111-150410 0147-006X
    • Ganguli S and Sompolinsky H 2012 Compressed sensing, sparsity, and dimensionality in neuronal information processing and data analysis Annu. Rev. Neurosci. 35 485
    • (2012) Annu. Rev. Neurosci. , vol.35 , Issue.1 , pp. 485
    • Ganguli, S.1    Sompolinsky, H.2
  • 32
    • 36849088522 scopus 로고    scopus 로고
    • Sparse MRI: The application of compressed sensing for rapid MR imaging
    • DOI 10.1002/mrm.21391
    • Lustig M, Donoho D and Pauly J M 2007 Sparse mri: the application of compressed sensing for rapid mr imaging Magnet. Reson. Med. 58 1182 (Pubitemid 350234205)
    • (2007) Magnetic Resonance in Medicine , vol.58 , Issue.6 , pp. 1182-1195
    • Lustig, M.1    Donoho, D.2    Pauly, J.M.3
  • 33
    • 0028936695 scopus 로고
    • Continuous update with random encoding (cure): A new strategy for dynamic imaging
    • 10.1002/mrm.1910330307 0740-3194
    • Parrish T and Hu X 1995 Continuous update with random encoding (cure): a new strategy for dynamic imaging Magn. Reson. Med. 33 326
    • (1995) Magn. Reson. Med. , vol.33 , Issue.3 , pp. 326
    • Parrish, T.1    Hu, X.2
  • 36
    • 79952533461 scopus 로고    scopus 로고
    • Reconstruction of complete connectivity matrix for connectomics by sampling neural connectivity with fluorescent synaptic markers
    • 10.1016/j.jneumeth.2011.01.021 0165-0270
    • Mishchenko Y 2011 Reconstruction of complete connectivity matrix for connectomics by sampling neural connectivity with fluorescent synaptic markers J. Neurosci. Methods 196 289
    • (2011) J. Neurosci. Methods , vol.196 , Issue.2 , pp. 289
    • Mishchenko, Y.1
  • 38
    • 77952339435 scopus 로고    scopus 로고
    • Fluorescence applications in molecular neurobiology
    • 10.1016/j.neuron.2010.02.002 0896-6273
    • Taraska J W and Zagotta W N 2010 Fluorescence applications in molecular neurobiology Neuron 66 170
    • (2010) Neuron , vol.66 , Issue.2 , pp. 170
    • Taraska, J.W.1    Zagotta, W.N.2
  • 39
    • 77952676839 scopus 로고    scopus 로고
    • Lensless wide-field fluorescent imaging on a chip using compressive decoding of sparse objects
    • 10.1364/OE.18.010510 1094-4087 10510
    • Coskun A F, Sencan I, Su T W and Ozcan A 2010 Lensless wide-field fluorescent imaging on a chip using compressive decoding of sparse objects Opt. Express 18 10510
    • (2010) Opt. Express , vol.18 , Issue.10
    • Coskun, A.F.1    Sencan, I.2    Su, T.W.3    Ozcan, A.4
  • 43
    • 34447500578 scopus 로고    scopus 로고
    • Object category structure in response patterns of neuronal population in monkey inferior temporal cortex
    • DOI 10.1152/jn.00024.2007
    • Kiani R, Esteky H, Mirpour K and Tanaka K 2007 Object category structure in response patterns of neuronal population in monkey inferior temporal cortex J. Neurophysiol. 97 4296 (Pubitemid 47080657)
    • (2007) Journal of Neurophysiology , vol.97 , Issue.6 , pp. 4296-4309
    • Kiani, R.1    Esteky, H.2    Mirpour, K.3    Tanaka, K.4
  • 44
    • 57649196582 scopus 로고    scopus 로고
    • Matching categorical object representations in inferior temporal cortex of man and monkey
    • 10.1016/j.neuron.2008.10.043 0896-6273
    • Kriegeskorte N, Mur M, Ruff D A, Kiani R, Bodurka J, Esteky H, Tanaka K and Bandettini P A 2008 Matching categorical object representations in inferior temporal cortex of man and monkey Neuron 60 1126
    • (2008) Neuron , vol.60 , Issue.6 , pp. 1126
    • Kriegeskorte, N.1    Mur, M.2    Ruff, D.A.3    Kiani, R.4    Bodurka, J.5    Esteky, H.6    Tanaka, K.7    Bandettini, P.A.8
  • 45
    • 57749113625 scopus 로고    scopus 로고
    • Memory traces in dynamical systems
    • 10.1073/pnas.0804451105 0027-8424 18970
    • Ganguli S, Huh D and Sompolinsky H 2008 Memory traces in dynamical systems Proc. Nat. Acad. Sci. 105 18970
    • (2008) Proc. Nat. Acad. Sci. , vol.105 , Issue.48
    • Ganguli, S.1    Huh, D.2    Sompolinsky, H.3
  • 47
    • 51849128608 scopus 로고    scopus 로고
    • Sparse coding via thresholding and local competition in neural circuits
    • 10.1162/neco.2008.03-07-486 0899-7667
    • Rozell C J, Johnson D H, Baraniuk R G and Olshausen B A 2008 Sparse coding via thresholding and local competition in neural circuits Neural Comput. 20 2526
    • (2008) Neural Comput. , vol.20 , Issue.10 , pp. 2526
    • Rozell, C.J.1    Johnson, D.H.2    Baraniuk, R.G.3    Olshausen, B.A.4
  • 48
    • 0029938380 scopus 로고    scopus 로고
    • Emergence of simple-cell receptive field properties by learning a sparse code for natural images
    • DOI 10.1038/381607a0
    • Olshausen B A et al 1996 Emergence of simple-cell receptive field properties by learning a sparse code for natural images Nature 381 607 (Pubitemid 26177476)
    • (1996) Nature , vol.381 , Issue.6583 , pp. 607-609
    • Olshausen, B.A.1    Field, D.J.2
  • 49
    • 77956001002 scopus 로고    scopus 로고
    • Role of homeostasis in learning sparse representations
    • 10.1162/neco.2010.05-08-795 0899-7667
    • Perrinet L U 2010 Role of homeostasis in learning sparse representations Neural Comput. 22 1812
    • (2010) Neural Comput. , vol.22 , Issue.7 , pp. 1812
    • Perrinet, L.U.1
  • 50
    • 71049142169 scopus 로고    scopus 로고
    • Statistical mechanics of sparse generalization and graphical model selection
    • 1742-5468 P10009
    • Lage-Castellanos A, Pagnani A and Weigt M 2009 Statistical mechanics of sparse generalization and graphical model selection J. Stat. Mech. P10009
    • (2009) J. Stat. Mech. , vol.2009 , Issue.10
    • Lage-Castellanos, A.1    Pagnani, A.2    Weigt, M.3
  • 54
    • 84865205969 scopus 로고    scopus 로고
    • Spatial information outflow from the hippocampal circuit: Distributed spatial coding and phase precession in the subiculum
    • 10.1523/JNEUROSCI.5942-11.2012 0270-6474 11539
    • Kim S M, Ganguli S and Frank L M 2012 Spatial information outflow from the hippocampal circuit: distributed spatial coding and phase precession in the subiculum J. Neurosci. 32 11539
    • (2012) J. Neurosci. , vol.32 , Issue.34
    • Kim, S.M.1    Ganguli, S.2    Frank, L.M.3
  • 55
    • 73149095169 scopus 로고    scopus 로고
    • Message-passing algorithms for compressed sensing
    • 10.1073/pnas.0909892106 0027-8424 18914
    • Donoho D L, Maleki A and Montanari A 2009 Message-passing algorithms for compressed sensing Proc. Nat. Acad. Sci. 106 18914
    • (2009) Proc. Nat. Acad. Sci. , vol.106 , Issue.45
    • Donoho, D.L.1    Maleki, A.2    Montanari, A.3
  • 56
    • 84862687572 scopus 로고    scopus 로고
    • Early sensory processing as predictive coding: Subtracting sparse approximations by circuit dynamics
    • Hu T, Druckmann S and Chklovskii D B 2011 Early sensory processing as predictive coding: subtracting sparse approximations by circuit dynamics Front. Neurosci. Conf. Abs: COSYNE
    • (2011) Front. Neurosci. Conf. Abs: COSYNE
    • Hu, T.1    Druckmann, S.2    Chklovskii, D.B.3
  • 57
    • 80053606112 scopus 로고    scopus 로고
    • Sparse incomplete representations: A novel role for olfactory granule cells
    • 10.1016/j.neuron.2011.07.031 0896-6273
    • Koulakov A A and Rinberg D 2011 Sparse incomplete representations: a novel role for olfactory granule cells Neuron 72 124
    • (2011) Neuron , vol.72 , Issue.1 , pp. 124
    • Koulakov, A.A.1    Rinberg, D.2
  • 58
    • 11744358706 scopus 로고
    • Spin-glass models of neural networks
    • 10.1103/PhysRevA.32.1007 0556-2791 A
    • Amit D J, Gutfreund H and Sompolinsky H 1985 Spin-glass models of neural networks Phys. Rev. A 32 1007
    • (1985) Phys. Rev. , vol.32 , Issue.2 , pp. 1007
    • Amit, D.J.1    Gutfreund, H.2    Sompolinsky, H.3
  • 59
    • 33646170322 scopus 로고    scopus 로고
    • Weak pairwise correlations imply strongly correlated network states in a neural population
    • 10.1038/nature04701 0028-0836
    • Schneidman E, Berry M J, Segev R and Bialek W 2006 Weak pairwise correlations imply strongly correlated network states in a neural population Nature 440 1007
    • (2006) Nature , vol.440 , Issue.7087 , pp. 1007
    • Schneidman, E.1    Berry, M.J.2    Segev, R.3    Bialek, W.4
  • 62
    • 17044416028 scopus 로고
    • Infinite-ranged models of spin-glasses
    • 10.1103/PhysRevB.17.4384 0163-1829 B
    • Kirkpatrick S and Sherrington D 1978 Infinite-ranged models of spin-glasses Phys. Rev. B 17 4384
    • (1978) Phys. Rev. , vol.17 , Issue.11 , pp. 4384
    • Kirkpatrick, S.1    Sherrington, D.2
  • 63
    • 36149043226 scopus 로고    scopus 로고
    • Stability of the Sherrington-Kirkpatrick solution of a spin glass model
    • De Almeida J R L and Thouless D J 2001 Stability of the Sherrington-Kirkpatrick solution of a spin glass model J. Phys. A: Math. Gen. 11 983
    • (2001) J. Phys. A: Math. Gen. , vol.11 , pp. 983
    • De Almeida, J.R.L.1    Thouless, D.J.2
  • 64
    • 35949015913 scopus 로고
    • Ultrametricity for physicists
    • 10.1103/RevModPhys.58.765 0034-6861
    • Rammal R, Toulouse G and Virasoro M A 1986 Ultrametricity for physicists Rev. Mod. Phys. 58 765
    • (1986) Rev. Mod. Phys. , vol.58 , Issue.3 , pp. 765
    • Rammal, R.1    Toulouse, G.2    Virasoro, M.A.3
  • 66
    • 3442902119 scopus 로고
    • Chaotic nature of the spin-glass phase
    • 10.1103/PhysRevLett.58.57 0031-9007
    • Bray A J and Moore M A 1987 Chaotic nature of the spin-glass phase Phys. Rev. Lett. 58 57
    • (1987) Phys. Rev. Lett. , vol.58 , Issue.1 , pp. 57
    • Bray, A.J.1    Moore, M.A.2
  • 68
    • 0020118274 scopus 로고
    • Neural networks and physical systems with emergent collective computational abilities
    • 10.1073/pnas.79.8.2554 0027-8424
    • Hopfield J J 1982 Neural networks and physical systems with emergent collective computational abilities Proc. Nat. Acad. Sci. 79 2554
    • (1982) Proc. Nat. Acad. Sci. , vol.79 , Issue.8 , pp. 2554
    • Hopfield, J.J.1
  • 70
    • 4244216476 scopus 로고
    • Storing infinite numbers of patterns in a spin glass model of neural networks
    • 10.1103/PhysRevLett.55.1530 0031-9007
    • Amit D J, Gutfreund H and Sompolinsky H 1985 Storing infinite numbers of patterns in a spin glass model of neural networks Phys. Rev. Lett 55 1530
    • (1985) Phys. Rev. Lett , vol.55 , Issue.14 , pp. 1530
    • Amit, D.J.1    Gutfreund, H.2    Sompolinsky, H.3
  • 71
    • 33645063980 scopus 로고
    • Statistical mechanics of neural networks near saturation
    • 10.1016/0003-4916(87)90092-3 0003-4916
    • Amit D J, Gutfreund H and Sompolinsky H 1987 Statistical mechanics of neural networks near saturation Ann. Phys. 173 30
    • (1987) Ann. Phys. , vol.173 , Issue.1 , pp. 30
    • Amit, D.J.1    Gutfreund, H.2    Sompolinsky, H.3
  • 72
    • 1842467956 scopus 로고    scopus 로고
    • Thouless-Anderson-Palmer equations for neural networks
    • 10.1103/PhysRevE.61.1839 1063-651X E
    • Shamir M and Sompolinsky H 2000 Thouless-Anderson-Palmer equations for neural networks Phys. Rev. E 61 1839
    • (2000) Phys. Rev. , vol.61 , Issue.2 , pp. 1839
    • Shamir, M.1    Sompolinsky, H.2
  • 73
    • 0001396998 scopus 로고
    • 10.1098/rspa.1935.0122 1364-5021 A
    • Bethe H A 1935 Proc. R. Soc. A 151 552
    • (1935) Proc. R. Soc. , vol.150 , Issue.871 , pp. 552
    • Bethe, H.A.1
  • 74
    • 23744513375 scopus 로고    scopus 로고
    • Constructing free-energy approximations and generalized belief propagation algorithms
    • DOI 10.1109/TIT.2005.850085
    • Yedidia J S, Freeman W T and Weiss Y 2005 Constructing free-energy approximations and generalized belief propagation algorithms IEEE Trans. Inform. Theory 51 2282 (Pubitemid 41136394)
    • (2005) IEEE Transactions on Information Theory , vol.51 , Issue.7 , pp. 2282-2312
    • Yedidia, J.S.1    Freeman, W.T.2    Weiss, Y.3
  • 75
    • 65749118363 scopus 로고    scopus 로고
    • Graphical models, exponential families, and variational inference
    • 10.1561/2200000001 1935-8237
    • Wainwright M J and Jordan M I 2008 Graphical models, exponential families, and variational inference Found. Trends Mach. Learn. 1 1
    • (2008) Found. Trends Mach. Learn. , vol.1 , Issue.1-2 , pp. 1
    • Wainwright, M.J.1    Jordan, M.I.2
  • 76
    • 0038401954 scopus 로고    scopus 로고
    • The bethe lattice spin glass revisited
    • 10.1007/PL00011099 1434-6028 B
    • Mézard M and Parisi G 2001 The bethe lattice spin glass revisited Eur. Phys. J. B 20 217
    • (2001) Eur. Phys. J. , vol.20 , Issue.2 , pp. 217
    • Mézard, M.1    Parisi, G.2
  • 77
    • 0037008520 scopus 로고    scopus 로고
    • Analytic and algorithmic solution of random satisfiability problems
    • DOI 10.1126/science.1073287
    • Mézard M, Parisi G and Zecchina R 2002 Analytic and algorithmic solution of random satisfiability problems Science 297 812 (Pubitemid 34839626)
    • (2002) Science , vol.297 , Issue.5582 , pp. 812-815
    • Mezard, M.1    Parisi, G.2    Zecchina, R.3
  • 78
    • 26944443478 scopus 로고    scopus 로고
    • Survey propagation: An algorithm for satisfiability
    • DOI 10.1002/rsa.20057
    • Braunstein A, Mézard M and Zecchina R 2005 Survey propagation: an algorithm for satisfiability Random Struct. Algorithms 27 201 (Pubitemid 41482546)
    • (2005) Random Structures and Algorithms , vol.27 , Issue.2 , pp. 201-226
    • Braunstein, A.1    Mezard, M.2    Zecchina, R.3
  • 79
    • 36149029786 scopus 로고
    • The space of interactions in neural network models
    • 10.1088/0305-4470/21/1/030 0305-4470
    • Gardner E 1988 The space of interactions in neural network models J. Phys. A: Math. Gen. 21 257
    • (1988) J. Phys. A: Math. Gen. , vol.21 , Issue.1 , pp. 257
    • Gardner, E.1
  • 80
    • 0002631885 scopus 로고    scopus 로고
    • Optimal storage properties of neural network models
    • Gardner E and Derrida B 1999 Optimal storage properties of neural network models J. Phys. A: Math. Gen. 21 271
    • (1999) J. Phys. A: Math. Gen. , vol.21 , pp. 271
    • Gardner, E.1    Derrida, B.2
  • 81
    • 4444234075 scopus 로고    scopus 로고
    • Optimal information storage and the distribution of synaptic weights: Perceptron versus Purkinje cell
    • Brunel N, Hakim V, Isope P, Nadal J P and Barbour B 2004 Optimal information storage and the distribution of synaptic weights: perceptron versus Purkinje cell Neuron 43 745
    • (2004) Neuron , vol.43 , pp. 745
    • Brunel, N.1    Hakim, V.2    Isope, P.3    Nadal, J.P.4    Barbour, B.5
  • 82
    • 0014526073 scopus 로고
    • A theory of cerebellar cortex
    • Marr D 1969 A theory of cerebellar cortex J. Physiol. 202 437
    • (1969) J. Physiol. , vol.202 , pp. 437
    • Marr, D.1
  • 83
    • 49649148257 scopus 로고
    • A theory of cerebellar function
    • 10.1016/0025-5564(71)90051-4 0025-5564
    • Albus J S 1971 A theory of cerebellar function Math. Biosci. 10 26
    • (1971) Math. Biosci. , vol.10 , Issue.1-2 , pp. 25
    • Albus, J.S.1
  • 84
    • 0037111840 scopus 로고    scopus 로고
    • Properties of unitary granule cell Purkinje cell synapses in adult rat cerebellar slices
    • Isope P and Barbour B 2002 Properties of unitary granule cell Purkinje cell synapses in adult rat cerebellar slices J. Neurosci. 22 9668
    • (2002) J. Neurosci. , vol.22 , pp. 9668
    • Isope, P.1    Barbour, B.2
  • 85
    • 36149037182 scopus 로고    scopus 로고
    • The space of interactions in neural networks: Gardner's computation with the cavity method
    • Mézard M 1999 The space of interactions in neural networks: Gardner's computation with the cavity method J. Phys. A: Math. Gen. 22 2181
    • (1999) J. Phys. A: Math. Gen. , vol.22 , pp. 2181
    • Mézard, M.1
  • 86
    • 0000263820 scopus 로고
    • Cavity-approach analysis of the neural-network learning problem
    • 10.1103/PhysRevE.47.4496 1063-651X E
    • Griniasty M 1993 Cavity-approach analysis of the neural-network learning problem Phys. Rev. E 47 4496
    • (1993) Phys. Rev. , vol.47 , Issue.6 , pp. 4496
    • Griniasty, M.1
  • 87
    • 84956272988 scopus 로고    scopus 로고
    • Analysing cluster formation by replica method
    • 10.1209/0295-5075/30/7/001 0295-5075
    • Lootens E and van den Broeck C 2007 Analysing cluster formation by replica method Europhys. Lett. 30 381
    • (2007) Europhys. Lett. , vol.30 , Issue.7 , pp. 381
    • Lootens, E.1    Van Den Broeck, C.2
  • 90
    • 0012246638 scopus 로고
    • Critical storage capacity of the j =± 1 neural network
    • 0305-4470 012
    • Krauth W and Opper M 1989 Critical storage capacity of the j =± 1 neural network J. Phys. A: Math. Gen. 22 L519
    • (1989) J. Phys. A: Math. Gen. , vol.22 , Issue.11 , pp. 519
    • Krauth, W.1    Opper, M.2
  • 91
    • 0001000745 scopus 로고
    • Storage capacity of memory networks with binary couplings
    • 10.1051/jphys:0198900500200305700 0302-0738
    • Krauth W and Mézard M 1989 Storage capacity of memory networks with binary couplings J. Phys. 50 3057
    • (1989) J. Phys. , vol.50 , Issue.20 , pp. 3057
    • Krauth, W.1    Mézard, M.2
  • 92
    • 8444244959 scopus 로고    scopus 로고
    • Discrete synaptic states define a major mechanism of synapse plasticity
    • DOI 10.1016/j.tins.2004.10.006, PII S0166223604003340
    • Montgomery J M and Madison D V 2004 Discrete synaptic states define a major mechanism of synapse plasticity Trends Neurosci. 27 744 (Pubitemid 39488078)
    • (2004) Trends in Neurosciences , vol.27 , Issue.12 , pp. 744-750
    • Montgomery, J.M.1    Madison, D.V.2
  • 93
    • 2342643338 scopus 로고    scopus 로고
    • Asymptotic corrections to the wigner semicircular eigenvalue spectrum of a large real symmetric random matrix using the replica method
    • Dhesi G S and Jones R C 1999 Asymptotic corrections to the wigner semicircular eigenvalue spectrum of a large real symmetric random matrix using the replica method J. Phys. A: Math. Gen. 23 5577
    • (1999) J. Phys. A: Math. Gen. , vol.23 , pp. 5577
    • Dhesi, G.S.1    Jones, R.C.2
  • 94
  • 95
    • 33750582231 scopus 로고    scopus 로고
    • Eigenvalue spectra of random matrices for neural networks
    • DOI 10.1103/PhysRevLett.97.188104
    • Rajan K and Abbott L F 2006 Eigenvalue spectra of random matrices for neural networks Phys. Rev. Lett. 97 188104 (Pubitemid 44684346)
    • (2006) Physical Review Letters , vol.97 , Issue.18 , pp. 188104
    • Rajan, K.1    Abbott, L.F.2
  • 96
    • 0000249632 scopus 로고    scopus 로고
    • Distributions of singular values for some random matrices
    • 10.1103/PhysRevE.60.3389 1063-651X E
    • Sengupta A M and Mitra P P 1999 Distributions of singular values for some random matrices Phys. Rev. E 60 3389
    • (1999) Phys. Rev. , vol.60 , Issue.3 , pp. 3389
    • Sengupta, A.M.1    Mitra, P.P.2
  • 97
    • 42749102750 scopus 로고    scopus 로고
    • Principal-component-analysis eigenvalue spectra from data with symmetry-breaking structure
    • 10.1103/PhysRevE.69.026124 1539-3755 E 026124
    • Hoyle D C and Rattray M 2004 Principal-component-analysis eigenvalue spectra from data with symmetry-breaking structure Phys. Rev. E 69 026124
    • (2004) Phys. Rev. , vol.69 , Issue.2
    • Hoyle, D.C.1    Rattray, M.2
  • 98
    • 0001560594 scopus 로고
    • On the distribution of the roots of certain symmetric matrices
    • 10.2307/1970008 0003-486X
    • Wigner E P 1958 On the distribution of the roots of certain symmetric matrices Ann. Math. 67 325
    • (1958) Ann. Math. , vol.67 , Issue.2 , pp. 325
    • Wigner, E.P.1
  • 99
    • 2342643338 scopus 로고    scopus 로고
    • Asymptotic corrections to the wigner semicircular eigenvalue spectrum of a large real symmetric random matrix using the replica method
    • 10.1088/0305-4470/23/23/029 0305-4470
    • Dhesi G S and Jones R C 1990 Asymptotic corrections to the wigner semicircular eigenvalue spectrum of a large real symmetric random matrix using the replica method J. Phys. A: Math. Gen. 23 5577
    • (1990) J. Phys. A: Math. Gen. , vol.23 , Issue.23 , pp. 5577
    • Dhesi, G.S.1    Jones, R.C.2
  • 100
    • 19844372999 scopus 로고    scopus 로고
    • Random matrix theory
    • DOI 10.1017/S0962492904000236
    • Edelman A and Rao N R 2005 Random matrix theory Acta Numerica 14 233 (Pubitemid 40763884)
    • (2005) Acta Numerica , vol.14 , pp. 233-297
    • Edelman, A.1    Rao, N.R.2
  • 101
    • 84875294645 scopus 로고
    • Extensions of Lipschitz mappings into a Hilbert space
    • Johnson W B and Lindenstrauss J 1984 Extensions of Lipschitz mappings into a Hilbert space Contemp. Math. 26 1
    • (1984) Contemp. Math. , vol.26 , pp. 1
    • Johnson, W.B.1    Lindenstrauss, J.2
  • 103
    • 0037236821 scopus 로고    scopus 로고
    • An elementary proof of a theorem of Johnson and Lindenstrauss
    • 10.1002/rsa.10073 1042-9832
    • Dasgupta S and Gupta A 2003 An elementary proof of a theorem of Johnson and Lindenstrauss Random Struct. Algorithms 22 60
    • (2003) Random Struct. Algorithms , vol.22 , Issue.1 , pp. 60
    • Dasgupta, S.1    Gupta, A.2
  • 104
    • 58849146227 scopus 로고    scopus 로고
    • Random projections of smooth manifolds
    • 10.1007/s10208-007-9011-z 1615-3375
    • Baraniuk R G and Wakin M B 2009 Random projections of smooth manifolds Found. Comput. Math. 9 51
    • (2009) Found. Comput. Math. , vol.9 , Issue.1 , pp. 51
    • Baraniuk, R.G.1    Wakin, M.B.2
  • 105
    • 77952743002 scopus 로고    scopus 로고
    • Low-dimensional models for dimensionality reduction and signal recovery: A geometric perspective
    • 10.1109/JPROC.2009.2038076 0018-9219
    • Baraniuk R G, Cevher V and Wakin M B 2010 Low-dimensional models for dimensionality reduction and signal recovery: a geometric perspective Proc. IEEE 98 959
    • (2010) Proc. IEEE , vol.98 , Issue.6 , pp. 959
    • Baraniuk, R.G.1    Cevher, V.2    Wakin, M.B.3
  • 107
    • 55649115527 scopus 로고    scopus 로고
    • A simple proof of the restricted isometry property for random matrices
    • 10.1007/s00365-007-9003-x 0176-4276
    • Baraniuk R, Davenport M, DeVore R and Wakin M 2008 A simple proof of the restricted isometry property for random matrices Construct. Approx. 28 253
    • (2008) Construct. Approx. , vol.28 , Issue.3 , pp. 253
    • Baraniuk, R.1    Davenport, M.2    Devore, R.3    Wakin, M.4
  • 109
    • 61349111475 scopus 로고    scopus 로고
    • Compressed and privacy-sensitive sparse regression
    • 10.1109/TIT.2008.2009605 0018-9448
    • Zhou S, Lafferty J and Wasserman L 2009 Compressed and privacy-sensitive sparse regression IEEE Trans. Inf. Theory 55 846
    • (2009) IEEE Trans. Inf. Theory , vol.55 , Issue.2 , pp. 846
    • Zhou, S.1    Lafferty, J.2    Wasserman, L.3
  • 118
    • 31744440684 scopus 로고    scopus 로고
    • Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information
    • DOI 10.1109/TIT.2005.862083
    • Candes E, Romberg J and Tao T 2006 Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information IEEE Trans. Inf. Theory 52 489 (Pubitemid 43174093)
    • (2006) IEEE Transactions on Information Theory , vol.52 , Issue.2 , pp. 489-509
    • Candes, E.J.1    Romberg, J.2    Tao, T.3
  • 119
    • 72449137292 scopus 로고    scopus 로고
    • A typical reconstruction limit for compressed sensing based on l p-norm minimization
    • 1742-5468 L09003
    • Kabashima Y, Wadayama T and Tanaka T 2009 A typical reconstruction limit for compressed sensing based on l p-norm minimization J. Stat. Mech. L09003
    • (2009) J. Stat. Mech. , vol.2009 , Issue.9
    • Kabashima, Y.1    Wadayama, T.2    Tanaka, T.3
  • 121
    • 77952044476 scopus 로고    scopus 로고
    • Statistical mechanics of compressed sensing
    • 10.1103/PhysRevLett.104.188701 0031-9007 188701
    • Ganguli S and Sompolinsky H 2010 Statistical mechanics of compressed sensing Phys. Rev. Lett. 104 188701
    • (2010) Phys. Rev. Lett. , vol.104 , Issue.18
    • Ganguli, S.1    Sompolinsky, H.2
  • 124
    • 84938523795 scopus 로고    scopus 로고
    • Graphical models concepts in compressed sensing
    • Montanari A 2010 Graphical models concepts in compressed sensing Compressed Sensing: Theory and Applications (Cambridge: Cambridge University Press) pp 394-438
    • (2010) Compressed Sensing: Theory and Applications , pp. 394-438
    • Montanari, A.1
  • 125
    • 0000840262 scopus 로고
    • Statistical dynamics of classical systems
    • 10.1103/PhysRevA.8.423 0556-2791 A
    • Martin P C, Siggia E D and Rose H A 1973 Statistical dynamics of classical systems Phys. Rev. A 8 423
    • (1973) Phys. Rev. , vol.8 , Issue.1 , pp. 423
    • Martin, P.C.1    Siggia, E.D.2    Rose, H.A.3
  • 126
    • 30244573658 scopus 로고
    • Dynamics as a substitute for replicas in systems with quenched random impurities
    • 10.1103/PhysRevB.18.4913 0163-1829 B
    • De Dominicis C 1978 Dynamics as a substitute for replicas in systems with quenched random impurities Phys. Rev. B 18 4913
    • (1978) Phys. Rev. , vol.18 , Issue.9 , pp. 4913
    • De Dominicis, C.1
  • 127
    • 0001724462 scopus 로고
    • Dynamics of spin systems with randomly asymmetric bonds: Langevin dynamics and a spherical model
    • 10.1103/PhysRevA.36.4922 0556-2791 A
    • Crisanti A and Sompolinsky H 1987 Dynamics of spin systems with randomly asymmetric bonds: Langevin dynamics and a spherical model Phys. Rev. A 36 4922
    • (1987) Phys. Rev. , vol.36 , Issue.10 , pp. 4922
    • Crisanti, A.1    Sompolinsky, H.2
  • 128
    • 0013109817 scopus 로고
    • Dynamics of spin systems with randomly asymmetric bonds: Ising spins and glauber dynamics
    • 10.1103/PhysRevA.37.4865 0556-2791 A
    • Crisanti A and Sompolinsky H 1988 Dynamics of spin systems with randomly asymmetric bonds: Ising spins and glauber dynamics Phys. Rev. A 37 4865
    • (1988) Phys. Rev. , vol.37 , Issue.12 , pp. 4865
    • Crisanti, A.1    Sompolinsky, H.2
  • 129
    • 84956135322 scopus 로고    scopus 로고
    • An exactly solvable asymmetric neural network model
    • 10.1209/0295-5075/4/2/007 0295-5075
    • Derrida B, Gardner E and Zippelius A 2007 An exactly solvable asymmetric neural network model Europhys. Lett. 4 167
    • (2007) Europhys. Lett. , vol.4 , Issue.2 , pp. 167
    • Derrida, B.1    Gardner, E.2    Zippelius, A.3
  • 130
    • 0029835892 scopus 로고    scopus 로고
    • Chaos in neuronal networks with balanced excitatory and inhibitory activity
    • DOI 10.1126/science.274.5293.1724
    • van Vreeswijk C and Sompolinsky H 1996 Chaos in neuronal networks with balanced excitatory and inhibitory activity Science 274 1724 (Pubitemid 26414907)
    • (1996) Science , vol.274 , Issue.5293 , pp. 1724-1726
    • Van Vreeswijk, C.1    Sompolinsky, H.2
  • 131
    • 0032528729 scopus 로고    scopus 로고
    • Chaotic balanced state in a model of cortical circuits
    • 10.1162/089976698300017214 0899-7667
    • Vreeswijk C and Sompolinsky H 1998 Chaotic balanced state in a model of cortical circuits Neural Comput. 10 1321
    • (1998) Neural Comput. , vol.10 , Issue.6 , pp. 1321
    • Vreeswijk, C.1    Sompolinsky, H.2
  • 132
    • 0000733651 scopus 로고
    • Suppressing chaos in neural networks by noise
    • 10.1103/PhysRevLett.69.3717 0031-9007
    • Molgedey L, Schuchhardt J and Schuster H G 1992 Suppressing chaos in neural networks by noise Phys. Rev. Lett. 69 3717
    • (1992) Phys. Rev. Lett. , vol.69 , Issue.26 , pp. 3717
    • Molgedey, L.1    Schuchhardt, J.2    Schuster, H.G.3
  • 133
    • 77954485043 scopus 로고    scopus 로고
    • Stimulus-dependent suppression of chaos in recurrent neural networks
    • 10.1103/PhysRevE.82.011903 1539-3755 E 011903
    • Rajan K, Abbott L F and Sompolinsky H 2010 Stimulus-dependent suppression of chaos in recurrent neural networks Phys. Rev. E 82 011903
    • (2010) Phys. Rev. , vol.82 , Issue.1
    • Rajan, K.1    Abbott, L.F.2    Sompolinsky, H.3
  • 134
    • 0034006515 scopus 로고    scopus 로고
    • Dynamics of sparsely connected networks of excitatory and inhibitory spiking neurons
    • DOI 10.1023/A:1008925309027
    • Brunel N 2000 Dynamics of sparsely connected networks of excitatory and inhibitory spiking neurons J. Comput. Neurosci. 8 183 (Pubitemid 30219050)
    • (2000) Journal of Computational Neuroscience , vol.8 , Issue.3 , pp. 183-208
    • Brunel, N.1
  • 136
    • 33745865064 scopus 로고    scopus 로고
    • Mean field methods for cortical network dynamics
    • 10.1007/978-3-540-27862-7-4 0302-9743
    • Hertz J, Lerchner A and Ahmadi M 2004 Mean field methods for cortical network dynamics Computational Neuroscience: Cortical Dynamics (Lecture Notes in Computer Science vol 3146) (Berlin: Springer) p 71
    • (2004) Computational Neuroscience: Cortical Dynamics , vol.3146 , pp. 71
    • Hertz, J.1    Lerchner, A.2    Ahmadi, M.3
  • 137
    • 78650812064 scopus 로고    scopus 로고
    • Dynamical entropy production in spiking neuron networks in the balanced state
    • 10.1103/PhysRevLett.105.268104 0031-9007 268104
    • Monteforte M and Wolf F 2010 Dynamical entropy production in spiking neuron networks in the balanced state Phys. Rev. Lett. 105 268104
    • (2010) Phys. Rev. Lett. , vol.105 , Issue.26
    • Monteforte, M.1    Wolf, F.2
  • 138
    • 84872392824 scopus 로고    scopus 로고
    • Dynamic flux tubes form reservoirs of stability in neuronal circuits
    • 10.1103/PhysRevX.2.041007 2160-3308 X 041007
    • Monteforte M and Wolf F 2012 Dynamic flux tubes form reservoirs of stability in neuronal circuits Phys. Rev. X 2 041007
    • (2012) Phys. Rev. , vol.2 , Issue.4
    • Monteforte, M.1    Wolf, F.2
  • 139
    • 77954231844 scopus 로고    scopus 로고
    • Sensitivity to perturbations in vivo implies high noise and suggests rate coding in cortex
    • 10.1038/nature09086 0028-0836
    • London M, Roth A, Beeren L, Häusser M and Latham P E 2010 Sensitivity to perturbations in vivo implies high noise and suggests rate coding in cortex Nature 466 123
    • (2010) Nature , vol.466 , Issue.7302 , pp. 123
    • London, M.1    Roth, A.2    Beeren, L.3    Häusser, M.4    Latham, P.E.5
  • 142
    • 0000755030 scopus 로고
    • Statistical mechanics of learning from examples
    • 10.1103/PhysRevA.45.6056 1050-2947 A
    • Seung H S, Sompolinsky H and Tishby N 1992 Statistical mechanics of learning from examples Phys. Rev. A 45 6056
    • (1992) Phys. Rev. , vol.45 , Issue.8 , pp. 6056
    • Seung, H.S.1    Sompolinsky, H.2    Tishby, N.3
  • 143
    • 0003797476 scopus 로고
    • Learning from examples in large neural networks
    • 10.1103/PhysRevLett.65.1683 0031-9007
    • Sompolinsky H, Tishby N and Seung H S 1990 Learning from examples in large neural networks Phys. Rev. Lett. 65 1683
    • (1990) Phys. Rev. Lett. , vol.65 , Issue.13 , pp. 1683
    • Sompolinsky, H.1    Tishby, N.2    Seung, H.S.3
  • 144
    • 0000745533 scopus 로고
    • Statistical mechanics of a multilayered neural network
    • 10.1103/PhysRevLett.65.2312 0031-9007
    • Barkai E, Hansel D and Kanter I 1990 Statistical mechanics of a multilayered neural network Phys. Rev. Lett. 65 2312
    • (1990) Phys. Rev. Lett. , vol.65 , Issue.18 , pp. 2312
    • Barkai, E.1    Hansel, D.2    Kanter, I.3
  • 145
    • 0001385756 scopus 로고
    • Broken symmetries in multilayered perceptrons
    • 10.1103/PhysRevA.45.4146 1050-2947 A
    • Barkai E, Hansel D and Sompolinsky H 1992 Broken symmetries in multilayered perceptrons Phys. Rev. A 45 4146
    • (1992) Phys. Rev. , vol.45 , Issue.6 , pp. 4146
    • Barkai, E.1    Hansel, D.2    Sompolinsky, H.3
  • 146
    • 0001104195 scopus 로고
    • Storage capacity and learning algorithms for two-layer neural networks
    • 10.1103/PhysRevA.45.7590 1050-2947 A
    • Engel A, Köhler H M, Tschepke F, Vollmayr H and Zippelius A 1992 Storage capacity and learning algorithms for two-layer neural networks Phys. Rev. A 45 7590
    • (1992) Phys. Rev. , vol.45 , Issue.10 , pp. 7590
    • Engel, A.1    Köhler, H.M.2    Tschepke, F.3    Vollmayr, H.4    Zippelius, A.5
  • 147
    • 0000538917 scopus 로고
    • Learning and generalization in a two-layer neural network: The role of the Vapnik-Chervonvenkis dimension
    • 10.1103/PhysRevLett.72.2113 0031-9007
    • Opper M 1994 Learning and generalization in a two-layer neural network: the role of the Vapnik-Chervonvenkis dimension Phys. Rev. Lett. 72 2113
    • (1994) Phys. Rev. Lett. , vol.72 , Issue.13 , pp. 2113
    • Opper, M.1
  • 148
    • 0000643004 scopus 로고
    • Weight space structure and internal representations: A direct approach to learning and generalization in multilayer neural networks
    • 10.1103/PhysRevLett.75.2432 0031-9007
    • Monasson R and Zecchina R 1995 Weight space structure and internal representations: a direct approach to learning and generalization in multilayer neural networks Phys. Rev. Lett. 75 2432
    • (1995) Phys. Rev. Lett. , vol.75 , Issue.12 , pp. 2432
    • Monasson, R.1    Zecchina, R.2
  • 149
    • 21344496612 scopus 로고    scopus 로고
    • Learning a rule in a multilayer neural network
    • Schwarze H 1999 Learning a rule in a multilayer neural network J. Phys. A: Math. Gen. 26 5781
    • (1999) J. Phys. A: Math. Gen. , vol.26 , pp. 5781
    • Schwarze, H.1
  • 150
    • 0000149970 scopus 로고    scopus 로고
    • Statistical mechanics of support vector networks
    • 10.1103/PhysRevLett.82.2975 0031-9007
    • Dietrich R, Opper M and Sompolinsky H 1999 Statistical mechanics of support vector networks Phys. Rev. Lett. 82 2975
    • (1999) Phys. Rev. Lett. , vol.82 , Issue.14 , pp. 2975
    • Dietrich, R.1    Opper, M.2    Sompolinsky, H.3
  • 151
    • 0035820749 scopus 로고    scopus 로고
    • Universal learning curves of support vector machines
    • DOI 10.1103/PhysRevLett.86.4410
    • Opper M and Urbanczik R 2001 Universal learning curves of support vector machines Phys. Rev. Lett. 86 4410 (Pubitemid 32469566)
    • (2001) Physical Review Letters , vol.86 , Issue.19 , pp. 4410-4413
    • Opper, M.1    Urbanczik, R.2
  • 152
    • 29044436457 scopus 로고    scopus 로고
    • A statistical physics approach for the analysis of machine learning algorithms on real data
    • 1742-5468 P11001
    • Malzahn D and Opper M 2005 A statistical physics approach for the analysis of machine learning algorithms on real data J. Stat. Mech. P11001
    • (2005) J. Stat. Mech. , vol.2005 , Issue.11
    • Malzahn, D.1    Opper, M.2
  • 154
    • 33344478663 scopus 로고    scopus 로고
    • The tempotron: A neuron that learns spike timing-based decisions
    • DOI 10.1038/nn1643
    • Gütig R and Sompolinsky H 2006 The tempotron: a neuron that learns spike timing - based decisions Nature Neurosci. 9 420 (Pubitemid 43290972)
    • (2006) Nature Neuroscience , vol.9 , Issue.3 , pp. 420-428
    • Gutig, R.1    Sompolinsky, H.2
  • 155
    • 78649244824 scopus 로고    scopus 로고
    • Theory of spike timing-based neural classifiers
    • 10.1103/PhysRevLett.105.218102 0031-9007 218102
    • Rubin R, Monasson R and Sompolinsky H 2010 Theory of spike timing-based neural classifiers Phys. Rev. Lett. 105 218102
    • (2010) Phys. Rev. Lett. , vol.105 , Issue.21
    • Rubin, R.1    Monasson, R.2    Sompolinsky, H.3
  • 156
    • 53949102013 scopus 로고    scopus 로고
    • Ome sweet ome: What can the genome tell us about the connectome?
    • 10.1016/j.conb.2008.08.010 0959-4388
    • Lichtman J W and Sanes J R 2008 Ome sweet ome: what can the genome tell us about the connectome? Curr. Opin. Neurobiol. 18 346
    • (2008) Curr. Opin. Neurobiol. , vol.18 , Issue.3 , pp. 346
    • Lichtman, J.W.1    Sanes, J.R.2
  • 157
    • 21144484106 scopus 로고
    • The statistical mechanics of learning a rule
    • 10.1103/RevModPhys.65.499 0034-6861
    • Watkin T L H, Rau A and Biehl M 1993 The statistical mechanics of learning a rule Rev. Mod. Phys. 65 499
    • (1993) Rev. Mod. Phys. , vol.65 , Issue.2 , pp. 499
    • Watkin, T.L.H.1    Rau, A.2    Biehl, M.3
  • 158
    • 77951692617 scopus 로고    scopus 로고
    • Statistical mechanics of learning orthogonal signals for general covariance models
    • 1742-5468 P04009
    • Hoyle D C 2010 Statistical mechanics of learning orthogonal signals for general covariance models J. Stat. Mech. P04009
    • (2010) J. Stat. Mech. , vol.2010 , Issue.4
    • Hoyle, D.C.1
  • 159
    • 21344477172 scopus 로고    scopus 로고
    • Statistical mechanics of unsupervised structure recognition
    • Biehl M and Mietzner A 1999 Statistical mechanics of unsupervised structure recognition J. Phys. A: Math. Gen. 27 1885
    • (1999) J. Phys. A: Math. Gen. , vol.27 , pp. 1885
    • Biehl, M.1    Mietzner, A.2
  • 160
    • 84957349379 scopus 로고
    • An exactly solvable model of unsupervised learning
    • Biehl M 1994 An exactly solvable model of unsupervised learning Europhys. Lett. 25 391 (Pubitemid 24763899)
    • (1994) Europhysics Letters , vol.25 , Issue.5 , pp. 391
    • Biehl, M.1
  • 161
    • 84956246072 scopus 로고    scopus 로고
    • Supervised learning from clustered input examples
    • 10.1209/0295-5075/30/2/010 0295-5075
    • Marangi C, Biehl M and Solla S A 2007 Supervised learning from clustered input examples Europhys. Lett. 30 117
    • (2007) Europhys. Lett. , vol.30 , Issue.2 , pp. 117
    • Marangi, C.1    Biehl, M.2    Solla, S.A.3
  • 162
    • 0000389568 scopus 로고
    • Statistical mechanics and phase transitions in clustering
    • 10.1103/PhysRevLett.65.945 0031-9007
    • Rose K, Gurewitz E and Fox G C 1990 Statistical mechanics and phase transitions in clustering Phys. Rev. Lett. 65 945
    • (1990) Phys. Rev. Lett. , vol.65 , Issue.8 , pp. 945
    • Rose, K.1    Gurewitz, E.2    Fox, G.C.3
  • 163
    • 0039677510 scopus 로고
    • Scaling laws in learning of classification tasks
    • 10.1103/PhysRevLett.70.3167 0031-9007
    • Barkai N, Seung H S and Sompolinsky H 1993 Scaling laws in learning of classification tasks Phys. Rev. Lett. 70 3167
    • (1993) Phys. Rev. Lett. , vol.70 , Issue.20 , pp. 3167
    • Barkai, N.1    Seung, H.S.2    Sompolinsky, H.3
  • 164
    • 0001225526 scopus 로고
    • Statistical mechanics of the maximum-likelihood density estimation
    • 10.1103/PhysRevE.50.1766 1063-651X E
    • Barkai N and Sompolinsky H 1994 Statistical mechanics of the maximum-likelihood density estimation Phys. Rev. E 50 1766
    • (1994) Phys. Rev. , vol.50 , Issue.3 , pp. 1766
    • Barkai, N.1    Sompolinsky, H.2
  • 165
    • 0000521616 scopus 로고    scopus 로고
    • Superparamagnetic clustering of data
    • 10.1103/PhysRevLett.76.3251 0031-9007
    • Blatt M, Wiseman S and Domany E 1996 Superparamagnetic clustering of data Phys. Rev. Lett. 76 3251
    • (1996) Phys. Rev. Lett. , vol.76 , Issue.18 , pp. 3251
    • Blatt, M.1    Wiseman, S.2    Domany, E.3
  • 166
    • 0004671099 scopus 로고    scopus 로고
    • Superparamagnetic clustering of data
    • 10.1103/PhysRevE.57.3767 1063-651X E
    • Wiseman S, Blatt M and Domany E 1998 Superparamagnetic clustering of data Phys. Rev. E 57 3767
    • (1998) Phys. Rev. , vol.57 , Issue.4 , pp. 3767
    • Wiseman, S.1    Blatt, M.2    Domany, E.3
  • 167
    • 78649390567 scopus 로고    scopus 로고
    • Significance analysis and statistical mechanics: An application to clustering
    • 10.1103/PhysRevLett.105.220601 0031-9007 220601
    • Łuksza M, Lässig M and Berg J 2010 Significance analysis and statistical mechanics: an application to clustering Phys. Rev. Lett. 105 220601
    • (2010) Phys. Rev. Lett. , vol.105 , Issue.22
    • Łuksza, M.1    Lässig, M.2    Berg, J.3
  • 168
    • 0041637573 scopus 로고
    • A brownian-motion model for the eigenvalues of a random matrix
    • 10.1063/1.1703862 0022-2488
    • Dyson F J 1962 A brownian-motion model for the eigenvalues of a random matrix J. Math. Phys. 3 1191
    • (1962) J. Math. Phys. , vol.3 , Issue.6 , pp. 1191
    • Dyson, F.J.1
  • 169
    • 54049103958 scopus 로고    scopus 로고
    • Exact distribution of the maximal height of p vicious walkers
    • 10.1103/PhysRevLett.101.150601 0031-9007 150601
    • Schehr G, Majumdar S N, Comtet A and Randon-Furling J 2008 Exact distribution of the maximal height of p vicious walkers Phys. Rev. Lett. 101 150601
    • (2008) Phys. Rev. Lett. , vol.101 , Issue.15
    • Schehr, G.1    Majumdar, S.N.2    Comtet, A.3    Randon-Furling, J.4
  • 170
    • 36448952418 scopus 로고    scopus 로고
    • Nonintersecting brownian excursions
    • 10.1214/105051607000000041 1050-5164
    • Tracy C A and Widom H 2007 Nonintersecting brownian excursions Ann. Appl. Probab. 17 953
    • (2007) Ann. Appl. Probab. , vol.17 , Issue.3 , pp. 953
    • Tracy, C.A.1    Widom, H.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.