메뉴 건너뛰기




Volumn 2, Issue 4, 2012, Pages

Dynamic flux tubes form reservoirs of stability in neuronal circuits

Author keywords

[No Author keywords available]

Indexed keywords

COGNITIVE FUNCTIONS; ELECTRICAL IMPULSE; FLUX TUBES; HIGH NOISE; IN-VIVO; MINIMAL MODEL; NEURON NUMBER; NEURONAL CIRCUITS; PHASE SPACES; RATE RESPONSE; SENSORY PROCESSING; SMALL PERTURBATIONS; STATE SEQUENCES; UNSTABLE DYNAMICS; WORKING MEMORIES;

EID: 84872392824     PISSN: None     EISSN: 21603308     Source Type: Journal    
DOI: 10.1103/PhysRevX.2.041007     Document Type: Article
Times cited : (73)

References (62)
  • 1
    • 84872391153 scopus 로고    scopus 로고
    • Principles of Brain Evolution (Sinauer Associates, Sunderland)
    • G. F. Striedter, Principles of Brain Evolution (Sinauer Associates, Sunderland, 2004), p. 436.
    • (2004) , pp. 436
    • Striedter, G.F.1
  • 3
    • 0017194166 scopus 로고
    • The Spontaneous Activity of Neurones in the Cat's Cerebral Cortex
    • B. D. Burns and A. C. Webb, The Spontaneous Activity of Neurones in the Cat's Cerebral Cortex, Proc. R. Soc. B 194, 211 (1976).
    • (1976) Proc. R. Soc. B. , vol.194 , pp. 211
    • Burns, B.D.1    Webb, A.C.2
  • 4
    • 0027498486 scopus 로고
    • The Highly Irregular Firing of Cortical Cells is Inconsistent with Temporal Integration of Random EPSPs
    • W. R. Softky and C. Koch, The Highly Irregular Firing of Cortical Cells is Inconsistent with Temporal Integration of Random EPSPs, J. Neurosci. 13, 334 (1993).
    • (1993) J. Neurosci. , vol.13 , pp. 334
    • Softky, W.R.1    Koch, C.2
  • 5
    • 0032525177 scopus 로고    scopus 로고
    • The Variable Discharge of Cortical Neurons: Implications for Connectivity, Computation, and Information Coding
    • M. N. Shadlen and W. T. Newsome, The Variable Discharge of Cortical Neurons: Implications for Connectivity, Computation, and Information Coding, J. Neurosci. 18, 3870 (1998).
    • (1998) J. Neurosci. , vol.18 , pp. 3870
    • Shadlen, M.N.1    Newsome, W.T.2
  • 9
    • 0028024043 scopus 로고
    • Noise, Neural Codes, and Cortical Organization
    • M. N. Shadlen and W. T. Newsome, Noise, Neural Codes, and Cortical Organization, Curr. Opin. Neurobiol. 4, 569 (1994).
    • (1994) Curr. Opin. Neurobiol. , vol.4 , pp. 569
    • Shadlen, M.N.1    Newsome, W.T.2
  • 10
    • 0000794781 scopus 로고
    • Rapid State Switching in Balanced Cortical Network Models
    • M.V. Tsodyks and T. Sejnowski, Rapid State Switching in Balanced Cortical Network Models, Network 6, 111 (1995).
    • (1995) Network , vol.6 , pp. 111
    • Tsodyks, M.V.1    Sejnowski, T.2
  • 11
    • 0029835892 scopus 로고    scopus 로고
    • Chaos in Neuronal Networks with Balanced Excitatory and Inhibitory Activity
    • Chaotic Balanced State in a Model of Cortical Circuits, Neural Comput. 10 1321 1998
    • Carl van Vreeswijk and Haim Sompolinsky, Chaos in Neuronal Networks with Balanced Excitatory and Inhibitory Activity, Science 274, 1724 (1996); Chaotic Balanced State in a Model of Cortical Circuits, Neural Comput. 10, 1321 (1998).
    • (1996) Science , vol.274 , pp. 1724
    • Vreeswijk, C.V.1    Sompolinsky, H.2
  • 13
    • 0003123657 scopus 로고
    • edited by Eytan Domany, Jan Leonard Hemmen, and K. Schulten (Springer, Berlin), Chap. 2
    • Christoph von der Malsburg, in Models of Neural Networks II, edited by Eytan Domany, Jan Leonard Hemmen, and K. Schulten (Springer, Berlin, 1994), Chap. 2, pp. 95-119.
    • (1994) Models of Neural Networks II , pp. 95-119
    • von der Malsburg, C.1
  • 15
    • 26444471949 scopus 로고    scopus 로고
    • Learning Short Synfire Chains by Self-Organization
    • John Hertz and Adam Prügel-Bennett, Learning Short Synfire Chains by Self-Organization, Network 7, 357 (1996)
    • (1996) Network , vol.7 , pp. 357
    • Hertz, J.1    Prügel-Bennett, A.2
  • 16
    • 33344478663 scopus 로고    scopus 로고
    • The Tempotron: A Neuron that Learns Spike Timing-Based Decisions
    • Robert Gütig and Haim Sompolinsky, The Tempotron: A Neuron that Learns Spike Timing-Based Decisions, Nat. Neurosci. 9, 420 (2006).
    • (2006) Nat. Neurosci. , vol.9 , pp. 420
    • Gütig, R.1    Sompolinsky, H.2
  • 17
    • 68949147577 scopus 로고    scopus 로고
    • Generating Coherent Patterns of Activity from Chaotic Neural Networks
    • David Sussillo and L. F. Abbott, Generating Coherent Patterns of Activity from Chaotic Neural Networks, Neuron 63, 544 (2009).
    • (2009) Neuron , vol.63 , pp. 544
    • Sussillo, D.1    Abbott, L.F.2
  • 18
    • 0001823266 scopus 로고
    • Dynamic Patterns
    • edited by A. J. Mandell, J. A. S. Kelso, and M. F. Shlesinger (World Scientific, Singapore)
    • N. H. Packard, in Dynamic Patterns in Complex Systems, edited by A. J. Mandell, J. A. S. Kelso, and M. F. Shlesinger (World Scientific, Singapore, 1988) pp. 293-301.
    • (1988) Complex Systems , pp. 293-301
    • Packard, N.H.1
  • 19
    • 45149138762 scopus 로고
    • Computation at the Edge of Chaos: Phase Transitions and Emergent Computation
    • C. G. Langton, Computation at the Edge of Chaos: Phase Transitions and Emergent Computation, Physica (Amsterdam) 42D, 12 (1990).
    • (1990) Physica (Amsterdam) , vol.42 D , pp. 12
    • Langton, C.G.1
  • 20
    • 0002082980 scopus 로고
    • Crutchfield Revisiting the Edge of Chaos: Evolving Cellular Automata to Perform Computations
    • Melanie Mitchell, Peter T. Hraber, and J. P. Crutchfield, Revisiting the Edge of Chaos: Evolving Cellular Automata to Perform Computations, Complex Syst. 7, 89 (1993).
    • (1993) Complex Syst , vol.7 , pp. 89
    • Melanie, M.1    Peter, T.2    Hraber, J.P.3
  • 22
    • 0036834701 scopus 로고    scopus 로고
    • Real-Time Computing without Stable States: A New Framework for Neural Computation Based on Perturbations
    • Wolfgang Maass, Thomas Natschläger, and Henry Markram, Real-Time Computing without Stable States: A New Framework for Neural Computation Based on Perturbations, Neural Comput. 14, 2531 (2002).
    • (2002) Neural Comput , vol.14 , pp. 2531
    • Maass, W.1    Natschläger, T.2    Markram, H.3
  • 24
    • 68649088777 scopus 로고    scopus 로고
    • Reservoir Computing Approaches to Recurrent Neural Network Training
    • Mantas Lukoševičius and Herbert Jaeger, Reservoir Computing Approaches to Recurrent Neural Network Training, Computer Science Review 3, 127 (2009)
    • (2009) Computer Science Review , vol.3 , pp. 127
    • Lukoševičius, M.1    Jaeger, H.2
  • 25
    • 34249938474 scopus 로고    scopus 로고
    • Optimization and Applications of Echo State Networks with Leaky-Integrator Neurons
    • Herbert Jaeger, Mantas Lukoševičius, Dan Popovici, and Udo Siewert, Optimization and Applications of Echo State Networks with Leaky-Integrator Neurons, Neural Netw. 20, 335 (2007).
    • (2007) Neural Netw , vol.20 , pp. 335
    • Jaeger, H.1    Lukoševičius, M.2    Popovici, D.3    Siewert, U.4
  • 26
    • 33846543881 scopus 로고    scopus 로고
    • Edge of Chaos and Prediction of Computational Performance for Neural Circuit Models
    • Robert Legenstein and Wolfgang Maass, Edge of Chaos and Prediction of Computational Performance for Neural Circuit Models, Neural Netw. 20, 323 (2007).
    • (2007) Neural Netw , vol.20 , pp. 323
    • Legenstein, R.1    Maass, W.2
  • 27
    • 34249812051 scopus 로고    scopus 로고
    • From Memory-Based Decisions to Decision-Based Movements: A Model of Interval Discrimination Followed by Action Selection
    • Prashant Joshi, From Memory-Based Decisions to Decision-Based Movements: A Model of Interval Discrimination Followed by Action Selection, Neural Netw. 20, 298 (2007).
    • (2007) Neural Netw , vol.20 , pp. 298
    • Joshi, P.1
  • 28
    • 33846556028 scopus 로고    scopus 로고
    • Sontag Computational Aspects of Feedback in Neural Circuits
    • Wolfgang Maass, Prashant Joshi, and Eduardo D. Sontag, Computational Aspects of Feedback in Neural Circuits, PLoS Comput. Biol. 3, e165 (2007).
    • (2007) PLoS Comput. Biol. , vol.3
    • Maass, W.1    Joshi, P.2    Eduardo, D.3
  • 30
    • 77956944749 scopus 로고    scopus 로고
    • Functional Identification of Biological Neural Networks Using Reservoir Adaptation for Point Processes
    • Tayfun Gü rel, Stefan Rotter, and Ulrich Egert, Functional Identification of Biological Neural Networks Using Reservoir Adaptation for Point Processes, J. Comput. Neurosci. 29, 279 (2009).
    • (2009) J. Comput. Neurosci. , vol.29 , pp. 279
    • Gürel, T.1    Rotter, S.2    Egert, U.3
  • 32
    • 81555214501 scopus 로고    scopus 로고
    • Beyond the Edge of Chaos: Amplification and Temporal Integration by Recurrent Networks in the Chaotic Regime
    • T. Toyoizumi and L. F. Abbott, Beyond the Edge of Chaos: Amplification and Temporal Integration by Recurrent Networks in the Chaotic Regime, Phys. Rev. E 84, 051908 (2011).
    • (2011) Phys. Rev. E , vol.84 , pp. 051908
    • Toyoizumi, T.1    Abbott, L.F.2
  • 33
    • 77954231844 scopus 로고    scopus 로고
    • Sensitivity to Perturbations In Vivo Implies High Noise and Suggests Rate Coding in Cortex
    • Michael London, Arnd Roth, Lisa Beeren, Michael Häusser, and Peter E Latham, Sensitivity to Perturbations In Vivo Implies High Noise and Suggests Rate Coding in Cortex, Nature (London) 466, 123 (2010)
    • (2010) Nature (London) , vol.466 , pp. 123
    • London, M.1    Roth, A.2    Beeren, L.3    Hüusser, M.4    Peter, L.E.5
  • 34
    • 78650812064 scopus 로고    scopus 로고
    • Dynamical Entropy Production in Spiking Neuron Networks in the Balanced State
    • Michael Monteforte and Fred Wolf, Dynamical Entropy Production in Spiking Neuron Networks in the Balanced State, Phys. Rev. Lett. 105, 268104 (2010).
    • (2010) Phys. Rev. Lett. , vol.105 , pp. 268104
    • Monteforte, M.1    Wolf, F.2
  • 35
    • 0037037944 scopus 로고    scopus 로고
    • Prevalence of Unstable Attractors in Networks of Pulse-Coupled Oscillators
    • Marc Timme, Fred Wolf, and Theo Geisel, Prevalence of Unstable Attractors in Networks of Pulse-Coupled Oscillators, Phys. Rev. Lett. 89, 154105 (2002).
    • (2002) Phys. Rev. Lett. , vol.89 , pp. 154105
    • Timme, M.1    Wolf, F.2    Geisel, T.3
  • 36
    • 23444449126 scopus 로고    scopus 로고
    • Unstable Attractors: Existence and Robustness in Networks of Oscillators with Delayed Pulse Coupling, Nonlinearity
    • Peter Ashwin and Marc Timme, Unstable Attractors: Existence and Robustness in Networks of Oscillators with Delayed Pulse Coupling, Nonlinearity 18, 2035 (2005)
    • (2005) , vol.18 , pp. 2035
    • Ashwin, P.1    Timme, M.2
  • 37
    • 1542610142 scopus 로고    scopus 로고
    • Topological Speed Limits to Network Synchronization
    • Marc Timme, Fred Wolf, and Theo Geisel, Topological Speed Limits to Network Synchronization, Phys. Rev. Lett. 92, 074101 (2004).
    • (2004) Phys. Rev. Lett. , vol.92 , pp. 074101
    • Timme, M.1    Wolf, F.2    Geisel, T.3
  • 38
    • 42749099447 scopus 로고    scopus 로고
    • Long Chaotic Transients in Complex Networks
    • Alexander Zumdieck, Marc Timme, Theo Geisel, and Fred Wolf, Long Chaotic Transients in Complex Networks, Phys. Rev. Lett. 93, 244103 (2004).
    • (2004) Phys. Rev. Lett. , vol.93 , pp. 244103
    • Zumdieck, A.1    Timme, M.2    Geisel, T.3    Wolf, F.4
  • 39
    • 40849134255 scopus 로고    scopus 로고
    • Quantitative Investigations of Electrical Nerve Excitation Treated as Polarization. 1907
    • Louis Lapicque, Quantitative Investigations of Electrical Nerve Excitation Treated as Polarization. 1907, Biol. Cybern. 97, 3419 (2007).
    • (2007) Biol. Cybern , vol.97 , pp. 3419
    • Lapicque, L.1
  • 40
    • 33745712258 scopus 로고    scopus 로고
    • A Review of the Integrate-and-Fire Neuron Model: I. Homogeneous Synaptic Input
    • A Review of the Integrate-and-Fire Neuron Model: II. Inhomogeneous Synaptic Input and Network Properties, Biol. Cybern 95 97 2006
    • A. N. Burkitt, A Review of the Integrate-and-Fire Neuron Model: I. Homogeneous Synaptic Input, Biol. Cybern. 95, 1 (2006); A Review of the Integrate-and-Fire Neuron Model: II. Inhomogeneous Synaptic Input and Network Properties, Biol. Cybern. 95, 97 (2006).
    • (2006) Biol. Cybern. , vol.95 , pp. 1
    • Burkitt, A.N.1
  • 43
    • 38849132055 scopus 로고    scopus 로고
    • Stable Irregular Dynamics in Complex Neural Networks
    • 048102 (2008); How Chaotic is the Balanced State? Front. Comput. Neurosci. 3 13. 2009
    • Sven Jahnke, Raoul-Martin Memmesheimer, and Marc Timme, Stable Irregular Dynamics in Complex Neural Networks, Phys. Rev. Lett. 100, 048102 (2008); How Chaotic is the Balanced State?, Front. Comput. Neurosci. 3, 13 (2009).
    • Phys. Rev. Lett. , vol.100
    • Jahnke, S.1    Memmesheimer, R.-M.2    Timme, M.3
  • 44
    • 33748426952 scopus 로고    scopus 로고
    • Desynchronization in Diluted Neural Networks
    • Rüdiger Zillmer, Roberto Livi, Antonio Politi, and Alessandro Torcini, Desynchronization in Diluted Neural Networks, Phys. Rev. E 74, 036203 (2006).
    • (2006) Phys. Rev. E , vol.74 , pp. 036203
    • Zillmer, R.1    Livi, R.2    Politi, A.3    Torcini, A.4
  • 45
    • 64349098706 scopus 로고    scopus 로고
    • Very Long Transients, Irregular Firing, and Chaotic Dynamics in Networks of Randomly Connected Inhibitory Integrateand-Fire Neurons
    • Rüdiger Zillmer, Nicolas Brunel, and David Hansel, Very Long Transients, Irregular Firing, and Chaotic Dynamics in Networks of Randomly Connected Inhibitory Integrateand-Fire Neurons, Phys. Rev. E 79, 031909 (2009).
    • (2009) Phys. Rev. E , vol.79 , pp. 031909
    • Zillmer, R.1    Brunel, N.2    Hansel, D.3
  • 46
    • 0000094836 scopus 로고
    • Pattern of Synchrony in Inhomogeneous Networks of Oscillators with Pulse Interactions
    • M. Tsodyks, I. Mitkov, and H. Sompolinsky, Pattern of Synchrony in Inhomogeneous Networks of Oscillators with Pulse Interactions, Phys. Rev. Lett. 71, 1280 (1993).
    • (1993) Phys. Rev. Lett. , vol.71 , pp. 1280
    • Tsodyks, M.1    Mitkov, I.2    Sompolinsky, H.3
  • 47
    • 0000368783 scopus 로고
    • Synchronization Induced by Temporal Delays in Pulse-Coupled Oscillators
    • U. Ernst, K. Pawelzik, and T. Geisel, Synchronization Induced by Temporal Delays in Pulse-Coupled Oscillators, Phys. Rev. Lett. 74, 1570 (1995).
    • (1995) Phys. Rev. Lett. , vol.74 , pp. 1570
    • Ernst, U.1    Pawelzik, K.2    Geisel, T.3
  • 48
    • 1542610142 scopus 로고    scopus 로고
    • Topological Speed Limits to Network Synchronization
    • Marc Timme, Fred Wolf, and Theo Geisel, Topological Speed Limits to Network Synchronization, Phys. Rev. Lett. 92, 074101 (2004).
    • (2004) Phys. Rev. Lett. , vol.92 , pp. 074101
    • Timme, M.1    Wolf, F.2    Geisel, T.3
  • 49
    • 84872371239 scopus 로고    scopus 로고
    • for more details on the analytical derivations of the phase map and the single spike Jacobians, the random matrix approximation of the mean Lyapunov exponent, the numerical convergence and the extensivity of the Lyapunov spectra, and additional distance calculations
    • See Supplemental Material at http://link.aps.org/ supplemental/10.1103/PhysRevX.2.041007 for more details on the analytical derivations of the phase map and the single spike Jacobians, the random matrix approximation of the mean Lyapunov exponent, the numerical convergence and the extensivity of the Lyapunov spectra, and additional distance calculations.
    • See Supplemental Material
  • 50
    • 0033210816 scopus 로고    scopus 로고
    • Fast Global Oscillations in Networks of Integrate-and-Fire Neurons with Low Firing Rates
    • N. Brunel and V. Hakim, Fast Global Oscillations in Networks of Integrate-and-Fire Neurons with Low Firing Rates, Neural Comput. 11, 1621 (1999).
    • (1999) Neural Comput , vol.11 , pp. 1621
    • Brunel, N.1    Hakim, V.2
  • 51
    • 0018989294 scopus 로고
    • Lyapunov Characteristic Exponents for Smooth Dynamical Systems and for Hamiltonian Systems; A Method for Computing all of them
    • Lyapunov Characteristic Exponents for Smooth Dynamical Systems and for Hamiltonian Systems; A Method for Computing all of them. Part 2 Numerical Application Meccanica 15 21 1980
    • Giancarlo Benettin, Luigi Galgani, Antonio Giorgilli, and Jean-Marie Strelcyn, Lyapunov Characteristic Exponents for Smooth Dynamical Systems and for Hamiltonian Systems; A Method for Computing all of them. Part 1: Theory, Meccanica 15, 9 (1980); Lyapunov Characteristic Exponents for Smooth Dynamical Systems and for Hamiltonian Systems; A Method for Computing all of them. Part 2: Numerical Application, Meccanica 15, 21 (1980).
    • (1980) Part 1 Theory, Meccanica , vol.15 , pp. 9
    • Benettin, G.1    Galgani, L.2    Giorgilli, A.3    Strelcyn, J.-M.4
  • 52
    • 35949018382 scopus 로고
    • Ergodic Theory of Chaos and Strange Attractors
    • J. P. Eckmann and D. Ruelle, Ergodic Theory of Chaos and Strange Attractors, Rev. Mod. Phys. 57, 617 (1985).
    • (1985) Rev. Mod. Phys. , vol.57 , pp. 617
    • Eckmann, J.P.1    Ruelle, D.2
  • 54
    • 1442329704 scopus 로고    scopus 로고
    • Margrie Whisker Movements Evoked by Stimulation of Single Pyramidal Cells in Rat Motor Cortex
    • London
    • Michael Brecht, Miriam Schneider, Bert Sakmann, and Troy W. Margrie, Whisker Movements Evoked by Stimulation of Single Pyramidal Cells in Rat Motor Cortex, Nature (London) 427, 704 (2004).
    • (2004) Nature , vol.427 , pp. 704
    • Brecht, M.1    Schneider, M.2    Sakmann, B.3    Troy, W.4
  • 55
    • 38049061220 scopus 로고    scopus 로고
    • Sparse Optical Microstimulation in Barrel Cortex Drives Learned Behaviour in Freely Moving Mice
    • Daniel Huber, Leopoldo Petreanu, Nima Ghitani, Sachin Ranade, Tomás Hromádka, Zach Mainen, and Karel Svoboda, Sparse Optical Microstimulation in Barrel Cortex Drives Learned Behaviour in Freely Moving Mice, Nature (London) 451, 61 (2008)
    • (2008) Nature (London) , vol.451 , pp. 61
    • Huber, D.1    Petreanu, L.2    Ghitani, N.3    Ranade, S.4    Hromádka, T.5    Mainen, Z.6    Svoboda, K.7
  • 56
    • 38049002082 scopus 로고    scopus 로고
    • Behavioural Report of Single Neuron Stimulation in Somatosensory Cortex
    • (London)
    • Arthur R. Houweling and Michael Brecht, Behavioural Report of Single Neuron Stimulation in Somatosensory Cortex, Nature (London) 451, 65 (2007).
    • (2007) Nature , vol.451 , pp. 65
    • Arthur, H.R.1    Brecht, M.2
  • 57
    • 0035794252 scopus 로고    scopus 로고
    • Transmission of Noise Coded versus Additive Signals through a Neuronal Ensemble
    • Benjamin Lindner and Lutz Schimansky-Geier, Transmission of Noise Coded versus Additive Signals through a Neuronal Ensemble, Phys. Rev. Lett. 86, 2934 (2001).
    • (2001) Phys. Rev. Lett. , vol.86 , pp. 2934
    • Lindner, B.1    Schimansky-Geier, L.2
  • 58
    • 0015357448 scopus 로고
    • Dynamics of Encoding in a Population of Neurons
    • Bruce W. Knight, Dynamics of Encoding in a Population of Neurons, J. Gen. Physiol. 59, 734 (1972).
    • (1972) J. Gen. Physiol. , vol.59 , pp. 734
    • Bruce, K.W.1
  • 59
    • 0002846229 scopus 로고    scopus 로고
    • A Mathematical Criterion Based on Phase Response Curves for Stability in a Ring of Coupled Oscillators
    • R. O. Dror, C. C. Canavier, R. J. Butera, J.W. Clark, and J. H. Byrne, A Mathematical Criterion Based on Phase Response Curves for Stability in a Ring of Coupled Oscillators, Biol. Cybern. 80, 11 (1999).
    • (1999) Biol. Cybern. , vol.80 , pp. 11
    • Dror, R.O.1    Canavier, C.C.2    Butera, R.J.3    Clark, J.W.4    Byrne, J.H.5
  • 60
    • 44949151576 scopus 로고    scopus 로고
    • The Simplest Problem in the Collective Dynamics of Neural Networks: Is Synchrony Stable
    • Marc Timme and Fred Wolf, The Simplest Problem in the Collective Dynamics of Neural Networks: Is Synchrony Stable?, Nonlinearity 21, 1579 (2008)
    • (2008) Nonlinearity , vol.21 , pp. 1579
    • Timme, M.1    Wolf, F.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.