-
1
-
-
55649115527
-
A simple proof of the restricted isometry property for random matrices
-
Dec.
-
R. G. Baraniuk, M. A. Davenport, R. A. DeVore, and M. B. Wakin, "A simple proof of the restricted isometry property for random matrices," Const. Approx., vol. 28, no. 3, pp. 253-263, Dec. 2008.
-
(2008)
Const. Approx.
, vol.28
, Issue.3
, pp. 253-263
-
-
Baraniuk, R.G.1
Davenport, M.A.2
DeVore, R.A.3
Wakin, M.B.4
-
2
-
-
17444432924
-
Image manifolds which are isometric to Euclidean space
-
July
-
D. L. Donoho and C. Grimes, "Image manifolds which are isometric to Euclidean space," J. Math. Imaging Comp. Vision, vol. 23, no. 1, pp. 5-24, July 2005.
-
(2005)
J. Math. Imaging Comp. Vision
, vol.23
, Issue.1
, pp. 5-24
-
-
Donoho, D.L.1
Grimes, C.2
-
3
-
-
0026065565
-
Eigenfaces for recognition
-
M. Turk and A. Pentland, "Eigenfaces for recognition," J. Cogn. Neurosci., vol. 3, no. 1, pp. 71-83, 1991.
-
(1991)
J. Cogn. Neurosci.
, vol.3
, Issue.1
, pp. 71-83
-
-
Turk, M.1
Pentland, A.2
-
4
-
-
84878104490
-
Compressive sampling
-
Madrid, Spain, August
-
E. J. Candés, "Compressive sampling," in Proc. Int. Congr. Math., vol. 3, Madrid, Spain, August 2006, pp. 1433-1452.
-
(2006)
Proc. Int. Congr. Math.
, vol.3
, pp. 1433-1452
-
-
Candés, E.J.1
-
5
-
-
58849146227
-
Random projections of smooth manifolds
-
R. G. Baraniuk and M. B. Wakin, "Random projections of smooth manifolds," Found. Comp. Math., vol. 9, no. 1, pp. 51-77, 2009.
-
(2009)
Found. Comp. Math.
, vol.9
, Issue.1
, pp. 51-77
-
-
Baraniuk, R.G.1
Wakin, M.B.2
-
7
-
-
79957800165
-
-
Technical Report TREE 0710, Rice University
-
C. Hegde, M. Wakin, and R. Baraniuk, "Random Projections for Manifold Learning: Proofs and Analysis," Technical Report TREE 0710, Rice University, 2007.
-
(2007)
Random Projections for Manifold Learning: Proofs and Analysis
-
-
Hegde, C.1
Wakin, M.2
Baraniuk, R.3
-
8
-
-
79952425530
-
Toeplitz compressed sensing matrices with applications to sparse channel estimation
-
J. Haupt, W. U. Bajwa, G. Raz, and R. Nowak, "Toeplitz compressed sensing matrices with applications to sparse channel estimation," IEEE Trans. Inform. Theory, 2008.
-
(2008)
IEEE Trans. Inform. Theory
-
-
Haupt, J.1
Bajwa, W.U.2
Raz, G.3
Nowak, R.4
-
10
-
-
36248929865
-
Deterministic constructions of compressed sensing matrices
-
R. A. DeVore, "Deterministic constructions of compressed sensing matrices," J. Complexity, vol. 23, no. 4-6, pp. 918-925, 2007.
-
(2007)
J. Complexity
, vol.23
, Issue.4-6
, pp. 918-925
-
-
DeVore, R.A.1
-
13
-
-
0037236821
-
An elementary proof of the Johnson-Lindenstrauss lemma
-
S. Dasgupta and A. Gupta, "An elementary proof of the Johnson-Lindenstrauss lemma," Random Struct. Algor., vol. 22, no. 1, pp. 60-65, 2002.
-
(2002)
Random Struct. Algor.
, vol.22
, Issue.1
, pp. 60-65
-
-
Dasgupta, S.1
Gupta, A.2
-
15
-
-
67349229146
-
-
A. Gupta, R. Krauthgamer, and J. Lee, "Bounded geometries, fractals, and low-distortion embeddings," 2003.
-
(2003)
Bounded Geometries, Fractals, and Low-distortion Embeddings
-
-
Gupta, A.1
Krauthgamer, R.2
Lee, J.3
-
16
-
-
34548291868
-
Nearest-neighbor-preserving embeddings
-
P. Indyk and A. Naor, "Nearest-neighbor-preserving embeddings," ACM Trans. Algorithms (TALG), vol. 3, no. 3, p. 31, 2007.
-
(2007)
ACM Trans. Algorithms (TALG)
, vol.3
, Issue.3
, pp. 31
-
-
Indyk, P.1
Naor, A.2
-
17
-
-
52349092455
-
On sparse reconstruction from Fourier and Gaussian measurements
-
M. Rudelson and R. Vershynin, "On sparse reconstruction from Fourier and Gaussian measurements," Communications on Pure and Applied Mathematics, vol. 61, no. 8, pp. 1025-1045, 2008.
-
(2008)
Communications on Pure and Applied Mathematics
, vol.61
, Issue.8
, pp. 1025-1045
-
-
Rudelson, M.1
Vershynin, R.2
-
18
-
-
79952433487
-
Introduction to the non-asymptotic analysis of random matrices
-
Cambridge University Press. Submitted
-
R. Vershynin, "Introduction to the non-asymptotic analysis of random matrices," Compressed sensing: theory and applications. Cambridge University Press. Submitted.
-
Compressed Sensing: Theory and Applications
-
-
Vershynin, R.1
|