메뉴 건너뛰기




Volumn 35, Issue , 2012, Pages 485-508

Compressed sensing, sparsity, and dimensionality in neuronal information processing and data analysis

Author keywords

communication; connectomics; generalization; imaging; learning; memory; random projections

Indexed keywords

ALGORITHM; DATA ANALYSIS; GENE EXPRESSION; HUMAN; INFORMATION PROCESSING; LEARNING; MULTIFACTOR DIMENSIONALITY REDUCTION; NERVE CELL NETWORK; NERVE TRACT; NEUROSCIENCE; NONLINEAR SYSTEM; PRIORITY JOURNAL; REVIEW; SEMANTICS; SHORT TERM MEMORY; SYNAPSE;

EID: 84862682946     PISSN: 0147006X     EISSN: 15454126     Source Type: Book Series    
DOI: 10.1146/annurev-neuro-062111-150410     Document Type: Review
Times cited : (223)

References (106)
  • 2
    • 33646712150 scopus 로고    scopus 로고
    • On the uniqueness of overcomplete dictionaries, and a practical way to retrieve them
    • DOI 10.1016/j.laa.2005.06.035, PII S0024379505003459
    • Aharon M, Elad M, Bruckstein A. 2006b. On the uniqueness of overcomplete dictionaries, and a practical way to retrieve them. Linear Algebr. Appl. 416(1):48-67 (Pubitemid 43737210)
    • (2006) Linear Algebra and Its Applications , vol.416 , Issue.1 , pp. 48-67
    • Aharon, M.1    Elad, M.2    Bruckstein, A.M.3
  • 3
    • 34548281969 scopus 로고
    • Could information theory provide an ecological theory of sensory processing?
    • Atick J. 1992. Could information theory provide an ecological theory of sensory processing? Netw. Comput. Neural Syst. 3(2):213-51
    • (1992) Netw. Comput. Neural Syst. , vol.3 , Issue.2 , pp. 213-251
    • Atick, J.1
  • 4
    • 0000547924 scopus 로고
    • What does the retina know about natural scenes?
    • Atick J, Redlich A. 1992. What does the retina know about natural scenes? Neural Comput. 4(2):196-210
    • (1992) Neural Comput. , vol.4 , Issue.2 , pp. 196-210
    • Atick, J.1    Redlich, A.2
  • 5
    • 85032751965 scopus 로고    scopus 로고
    • Compressive sensing
    • Baraniuk R. 2007. Compressive sensing. Signal Proc. Mag. IEEE 24(4):118-21
    • (2007) Signal Proc. Mag. IEEE , vol.24 , Issue.4 , pp. 118-121
    • Baraniuk, R.1
  • 6
    • 79951478824 scopus 로고    scopus 로고
    • More is less: Signal processing and the data deluge
    • Baraniuk R. 2011. More is less: signal processing and the data deluge. Science 331(6018):717-19
    • (2011) Science , vol.331 , Issue.6018 , pp. 717-719
    • Baraniuk, R.1
  • 7
    • 77952743002 scopus 로고    scopus 로고
    • Low-dimensional models for dimensionality reduction and signal recovery: A geometric perspective
    • Baraniuk R, Cevher V, Wakin M. 2010. Low-dimensional models for dimensionality reduction and signal recovery: a geometric perspective. Proc. IEEE 98(6):959-71
    • (2010) Proc. IEEE , vol.98 , Issue.6 , pp. 959-971
    • Baraniuk, R.1    Cevher, V.2    Wakin, M.3
  • 8
    • 55649115527 scopus 로고    scopus 로고
    • A simple proof of the restricted isometry property for random matrices
    • Baraniuk R, Davenport M, DeVore R, Wakin M. 2008. A simple proof of the restricted isometry property for random matrices. Constr. Approx. 28(3):253-63
    • (2008) Constr. Approx. , vol.28 , Issue.3 , pp. 253-263
    • Baraniuk, R.1    Davenport, M.2    Devore, R.3    Wakin, M.4
  • 9
    • 58849146227 scopus 로고    scopus 로고
    • Random projections of smooth manifolds
    • Baraniuk R, Wakin M. 2009. Random projections of smooth manifolds. Found. Comput. Math. 9(1):51-77
    • (2009) Found. Comput. Math. , vol.9 , Issue.1 , pp. 51-77
    • Baraniuk, R.1    Wakin, M.2
  • 10
    • 0002014402 scopus 로고
    • Possible principles underlying the transformation of sensory messages
    • ed. WA Rosenblith New York: Wiley
    • Barlow H. 1961. Possible principles underlying the transformation of sensory messages. In Sensory Communication, ed. WA Rosenblith, pp. 217-34. New York: Wiley
    • (1961) Sensory Communication , pp. 217-234
    • Barlow, H.1
  • 11
    • 0043264798 scopus 로고    scopus 로고
    • Redundancy reduction revisited
    • DOI 10.1088/0954-898X/12/3/301, PII S0954898X01242638
    • Barlow H. 2001. Redundancy reduction revisited. Netw. Comput. Neural Syst. 12(3):241-53 (Pubitemid 33626945)
    • (2001) Network: Computation in Neural Systems , vol.12 , Issue.3 , pp. 241-253
    • Barlow, H.1
  • 13
    • 0030832881 scopus 로고    scopus 로고
    • The 'independent components' of natural scenes are edge filters
    • DOI 10.1016/S0042-6989(97)00121-1, PII S0042698997001211
    • Bell A, Sejnowski T. 1997. The independent components of natural scenes are edge filters. Vis. Res. 37(23):3327-38 (Pubitemid 27493806)
    • (1997) Vision Research , vol.37 , Issue.23 , pp. 3327-3338
    • Bell, A.J.1    Sejnowski, T.J.2
  • 17
    • 59749104367 scopus 로고    scopus 로고
    • From sparse solutions of systems of equations to sparse modeling of signals and images
    • Bruckstein A, Donoho D, Elad M. 2009. From sparse solutions of systems of equations to sparse modeling of signals and images. Siam Rev. 51(1):34-81
    • (2009) Siam Rev. , vol.51 , Issue.1 , pp. 34-81
    • Bruckstein, A.1    Donoho, D.2    Elad, M.3
  • 18
    • 4444234075 scopus 로고    scopus 로고
    • Optimal information storage and the distribution of synaptic weights: Perceptron versus Purkinje cell
    • DOI 10.1016/j.neuron.2004.08.023, PII S0896627304005288
    • Brunel N, Hakim V, Isope P, Nadal J, Barbour B. 2004. Optimal information storage and the distribution of synaptic weights: perceptron versus Purkinje cell. Neuron 43(5):745-57 (Pubitemid 39179732)
    • (2004) Neuron , vol.43 , Issue.5 , pp. 745-757
    • Brunel, N.1    Hakim, V.2    Isope, P.3    Nadal, J.-P.4    Barbour, B.5
  • 19
    • 27144489164 scopus 로고    scopus 로고
    • A tutorial on support vector machines for pattern recognition
    • Burges C. 1998. A tutorial on support vector machines for pattern recognition. Data Min. Knowl. Discov. 2(2):121-67 (Pubitemid 128695475)
    • (1998) Data Mining and Knowledge Discovery , vol.2 , Issue.2 , pp. 121-167
    • Burges, C.J.C.1
  • 20
    • 81255188959 scopus 로고    scopus 로고
    • A probabilistic and RIPless theory of compressed sensing
    • Candes E, Plan Y. 2010. A probabilistic and RIPless theory of compressed sensing. IEEE Trans. Inf. Theory 57(11)7235-54
    • (2010) IEEE Trans. Inf. Theory , vol.57 , Issue.11 , pp. 7235-7254
    • Candes, E.1    Plan, Y.2
  • 21
    • 34249687049 scopus 로고    scopus 로고
    • Sparsity and incoherence in compressive sampling
    • DOI 10.1088/0266-5611/23/3/008, PII S0266561107398742, 008
    • Candes E, Romberg J. 2007. Sparsity and incoherence in compressive sampling. Invers. Probl. 23(3):969-85 (Pubitemid 46838836)
    • (2007) Inverse Problems , vol.23 , Issue.3 , pp. 969-985
    • Candes, E.1    Romberg, J.2
  • 24
    • 33947416035 scopus 로고    scopus 로고
    • Near-optimal signal recovery from random projections: Universal encoding strategies?
    • DOI 10.1109/TIT.2006.885507
    • Candes E, TaoT. 2006. Near-optimal signal recovery from random projections: universal encoding strategies? IEEE Trans. Inf. Theory 52(12):5406-25 (Pubitemid 46445381)
    • (2006) IEEE Transactions on Information Theory , vol.52 , Issue.12 , pp. 5406-5425
    • Candes, E.J.1    Tao, T.2
  • 25
    • 85032750937 scopus 로고    scopus 로고
    • An introduction to compressive sampling
    • Candes E, Wakin M. 2008. An introduction to compressive sampling. IEEE Sig. Proc. Mag. 25(2):21-30
    • (2008) IEEE Sig. Proc. Mag. , vol.25 , Issue.2 , pp. 21-30
    • Candes, E.1    Wakin, M.2
  • 26
    • 77952676839 scopus 로고    scopus 로고
    • Lensless wide-field fluorescent imaging on a chip using compressive decoding of sparse objects
    • Coskun A, Sencan I, Su T, Ozcan A. 2010. Lensless wide-field fluorescent imaging on a chip using compressive decoding of sparse objects. Opt. Express 18(10):10510-23
    • (2010) Opt. Express , vol.18 , Issue.10 , pp. 10510-10523
    • Coskun, A.1    Sencan, I.2    Su, T.3    Ozcan, A.4
  • 29
    • 0037236821 scopus 로고    scopus 로고
    • An elementary proof of a theorem of Johnson and Lindenstrauss
    • Dasgupta S, Gupta A. 2003. An elementary proof of a theorem of Johnson and Lindenstrauss. Random Struct. Algorithms 22(1):60-65
    • (2003) Random Struct. Algorithms , vol.22 , Issue.1 , pp. 60-65
    • Dasgupta, S.1    Gupta, A.2
  • 30
  • 33
    • 0346061723 scopus 로고    scopus 로고
    • High-dimensional data analysis: The curses and blessings of dimensionality
    • Donoho D. 2000. High-dimensional data analysis: the curses and blessings of dimensionality. AMS Math Challenges Lecture, pp. 1-32
    • (2000) AMS Math Challenges Lecture , pp. 1-32
    • Donoho, D.1
  • 34
    • 33645712892 scopus 로고    scopus 로고
    • IEEE Trans. Inf. Theory
    • Donoho D. 2006. Compressed sensing. IEEE Trans. Inf. Theory 52(4):1289-306
    • (2006) Compressed Sensing. , vol.52 , Issue.4 , pp. 1289-1306
    • Donoho, D.1
  • 35
    • 73149095169 scopus 로고    scopus 로고
    • Message-passing algorithms for compressed sensing
    • Donoho D, Maleki A, Montanari A. 2009. Message-passing algorithms for compressed sensing. Proc. Natl. Acad. Sci. USA 106(45):18914-19
    • (2009) Proc. Natl. Acad. Sci. USA , vol.106 , Issue.45 , pp. 18914-18919
    • Donoho, D.1    Maleki, A.2    Montanari, A.3
  • 38
    • 85032752277 scopus 로고    scopus 로고
    • Single-pixel imaging via compressive sampling
    • Duarte M, DavenportM, TakharD, Laska J, Sun T, et al. 2008. Single-pixel imaging via compressive sampling. Signal Proc. Mag. IEEE 25(2):83-91
    • (2008) Signal Proc. Mag. IEEE , vol.25 , Issue.2 , pp. 83-91
    • Duarte, M.1    Takhard, D.2    Laska, J.3    Sun, T.4
  • 43
    • 41549129293 scopus 로고    scopus 로고
    • One-dimensional dynamics of attention and decision making in LIP
    • DOI 10.1016/j.neuron.2008.01.038, PII S0896627308001682
    • Ganguli S, Bisley J, Roitman J, Shadlen M, Goldberg M, Miller K. 2008a. One-dimensional dynamics of attention and decision making in lip. Neuron 58(1):15-25 (Pubitemid 351467033)
    • (2008) Neuron , vol.58 , Issue.1 , pp. 15-25
    • Ganguli, S.1    Bisley, J.W.2    Roitman, J.D.3    Shadlen, M.N.4    Goldberg, M.E.5    Miller, K.D.6
  • 45
    • 85162050505 scopus 로고    scopus 로고
    • Short-term memory in neuronal networks through dynamical compressed sensing
    • Ganguli S, Sompolinsky H. 2010a. Short-term memory in neuronal networks through dynamical compressed sensing. Neural Inf. Process. Syst. (NIPS) 23:667-75
    • (2010) Neural Inf. Process. Syst. (NIPS) , vol.23 , pp. 667-675
    • Ganguli, S.1    Sompolinsky, H.2
  • 46
    • 77952044476 scopus 로고    scopus 로고
    • Statistical mechanics of compressed sensing
    • Ganguli S, SompolinskyH. 2010b. Statistical mechanics of compressed sensing. Phys. Rev. Lett. 104(18):188701
    • (2010) Phys. Rev. Lett. , vol.104 , Issue.18 , pp. 188701
    • Ganguli, S.1    Sompolinsky, H.2
  • 47
    • 36149029786 scopus 로고
    • The space of interactions in neural network models
    • Gardner E. 1988. The space of interactions in neural network models. J. Phys. A 21:257-70
    • (1988) J. Phys. A , vol.21 , pp. 257-270
    • Gardner, E.1
  • 49
    • 85162042191 scopus 로고    scopus 로고
    • Random projections for manifold learning
    • Hegde C, Wakin M, Baraniuk R. 2007. Random projections for manifold learning. Neural Inf. Process. Syst. http://books. nips.cc/papers/files/nips20/ NIPS2007-1100. pdf
    • (2007) Neural Inf. Process. Syst.
    • Hegde, C.1    Wakin, M.2    Baraniuk, R.3
  • 50
    • 84862647290 scopus 로고    scopus 로고
    • Ramsey theory reveals the conditions when sparse coding on subsampled data is unique
    • Hillar CJ, Sommer FT. 2011. Ramsey theory reveals the conditions when sparse coding on subsampled data is unique. ArXiv abs/1106. 3616
    • (2011) ArXiv abs/1106. , pp. 3616
    • Hillar, C.J.1    Sommer, F.T.2
  • 51
    • 35649001607 scopus 로고
    • A quantitative description of membrane current and its application to conduction and excitation in nerve
    • Hodgkin A, Huxley A. 1952. A quantitative description of membrane current and its application to conduction and excitation in nerve. J. Physiol. 117:500-44
    • (1952) J. Physiol. , vol.117 , pp. 500-544
    • Hodgkin, A.1    Huxley, A.2
  • 52
    • 0020118274 scopus 로고
    • Neural networks and physical systems with emergent collective computational abilities
    • Hopfield J. 1982. Neural networks and physical systems with emergent collective computational abilities. Proc. Natl. Acad. Sci. USA 79(8):2554-59
    • (1982) Proc. Natl. Acad. Sci. USA , vol.79 , Issue.8 , pp. 2554-2559
    • Hopfield, J.1
  • 53
    • 84555179514 scopus 로고    scopus 로고
    • Reconstruction of sparse circuits using multi-neuronal excitation (rescume)
    • Hu T, Chklovskii D. 2009. Reconstruction of sparse circuits using multi-neuronal excitation (rescume). Adv. Neural Inf. Proc. Syst. 22:790-98
    • (2009) Adv. Neural Inf. Proc. Syst. , vol.22 , pp. 790-798
    • Hu, T.1    Chklovskii, D.2
  • 54
    • 84862687572 scopus 로고    scopus 로고
    • Early sensory processing as predictive coding: Subtracting sparse approximations by circuit dynamics
    • Hu T, Druckmann S, Chklovskii D. 2011. Early sensory processing as predictive coding: subtracting sparse approximations by circuit dynamics. Front. Neurosci. Conf. Abs: COSYNE
    • (2011) Front. Neurosci. Conf. Abs: COSYNE
    • Hu, T.1    Druckmann, S.2    Chklovskii, D.3
  • 55
    • 79957657604 scopus 로고    scopus 로고
    • Statistical models of natural images and cortical visual representation
    • Hyvarinen A. 2010. Statistical models of natural images and cortical visual representation. Top. Cogn. Sci. 2:251-64
    • (2010) Top. Cogn. Sci. , vol.2 , pp. 251-264
    • Hyvarinen, A.1
  • 56
    • 0031644241 scopus 로고    scopus 로고
    • Approximate nearest neighbors: Towards removing the curse of dimensionality
    • 30th
    • Indyk P, Motwani R. 1998. Approximate nearest neighbors: towards removing the curse of dimensionality. Proc. Annu. ACM Symp. Theory Comput. , 30th, pp. 604-13
    • (1998) Proc. Annu. ACM Symp. Theory Comput. , pp. 604-613
    • Indyk, P.1    Motwani, R.2
  • 57
    • 85162025941 scopus 로고    scopus 로고
    • Deciphering subsampled data: Adaptive compressive sampling as a principle of brain communication
    • Isely G, Hillar CJ, Sommer FT. 2010. Deciphering subsampled data: adaptive compressive sampling as a principle of brain communication. Adv. Neural Inf. Proc. Syst. (NIPS) 23:910-18
    • (2010) Adv. Neural Inf. Proc. Syst. (NIPS) , Issue.23 , pp. 910-918
    • Isely, G.1    Hillar, C.J.2    Sommer, F.T.3
  • 59
    • 1842421269 scopus 로고    scopus 로고
    • Harnessing nonlinearity: Predicting chaotic systems and saving energy in wireless communication
    • Jaeger H, Haas H. 2004. Harnessing nonlinearity: predicting chaotic systems and saving energy in wireless communication. Science 304(5667):78-81
    • (2004) Science , vol.304 , Issue.5667 , pp. 78-81
    • Jaeger, H.1    Haas, H.2
  • 60
    • 0001654702 scopus 로고
    • Extensions of Lipschitz mappings into a Hilbert space
    • Johnson W, Lindenstrauss J. 1984. Extensions of Lipschitz mappings into a Hilbert space. Contemp. Math. 26:189-206
    • (1984) Contemp. Math. , vol.26 , pp. 189-206
    • Johnson, W.1    Lindenstrauss, J.2
  • 61
    • 72449137292 scopus 로고    scopus 로고
    • A typical reconstruction limit for compressed sensing based on l p-norm minimization
    • Kabashima Y, Wadayama T, Tanaka T. 2009. A typical reconstruction limit for compressed sensing based on l p-norm minimization. J. Stat. Mech. L09003
    • (2009) J. Stat. Mech.
    • Kabashima, Y.1    Wadayama, T.2    Tanaka, T.3
  • 62
    • 85162334998 scopus 로고    scopus 로고
    • Accounting for network effects in neuronal responses using l1 regularized point process models
    • Kelly R, Smith M, Kass R, Lee T. 2010. Accounting for network effects in neuronal responses using l1 regularized point process models. Neural Inf. Proc. Syst. (NIPS) 23:1099-107
    • (2010) Neural Inf. Proc. Syst. (NIPS) , Issue.23 , pp. 1099-1107
    • Kelly, R.1    Smith, M.2    Kass, R.3    Lee, T.4
  • 63
    • 34447500578 scopus 로고    scopus 로고
    • Object category structure in response patterns of neuronal population in monkey inferior temporal cortex
    • DOI 10.1152/jn.00024.2007
    • Kiani R, Esteky H, Mirpour K, Tanaka K. 2007. Object category structure in response patterns of neuronal population in monkey inferior temporal cortex. J. Neurophysiol. 97(6):4296-309 (Pubitemid 47080657)
    • (2007) Journal of Neurophysiology , vol.97 , Issue.6 , pp. 4296-4309
    • Kiani, R.1    Esteky, H.2    Mirpour, K.3    Tanaka, K.4
  • 64
    • 80053606112 scopus 로고    scopus 로고
    • Sparse incomplete representations: A novel role for olfactory granule cells
    • Koulakov A, Rinberg D. 2011. Sparse incomplete representations: a novel role for olfactory granule cells. Neuron 72(1):124-36
    • (2011) Neuron , vol.72 , Issue.1 , pp. 124-136
    • Koulakov, A.1    Rinberg, D.2
  • 66
    • 57649196582 scopus 로고    scopus 로고
    • Matching categorical object representations in inferior temporal cortex of man and monkey
    • Kriegeskorte N, Mur M, Ruff D, Kiani R, Bodurka J, et al. 2008. Matching categorical object representations in inferior temporal cortex of man and monkey. Neuron 60(6):1126-41
    • (2008) Neuron , vol.60 , Issue.6 , pp. 1126-1141
    • Kriegeskorte, N.1    Mur, M.2    Ruff, D.3    Kiani, R.4    Bodurka, J.5
  • 67
  • 68
    • 70049111780 scopus 로고    scopus 로고
    • Efficient structure learning ofMarkov networks using L1 regularization
    • Lee S, Ganapathi V, KollerD. 2006a. Efficient structure learning ofMarkov networks using L1 regularization. Neural Inf. Process. Syst. (NIPS) 19:817-24
    • (2006) Neural Inf. Process. Syst. (NIPS) , vol.19 , pp. 817-824
    • Lee, S.1    Ganapathi, V.2    Koller, D.3
  • 70
    • 0036212160 scopus 로고    scopus 로고
    • Efficient coding of natural sounds
    • DOI 10.1038/nn831
    • Lewicki M. 2002. Efficient coding of natural sounds. Nat. Neurosci. 5(4):356-63 (Pubitemid 34279816)
    • (2002) Nature Neuroscience , vol.5 , Issue.4 , pp. 356-363
    • Lewicki, M.S.1
  • 71
    • 0025318244 scopus 로고
    • Perceptual neural organization: Some approaches based on network models and information theory
    • Linsker R. 1990. Perceptual neural organization: some approaches based on network models and information theory. Annu. Rev. Neurosci. 13(1):257-81 (Pubitemid 20100651)
    • (1990) Annual Review of Neuroscience , vol.13 , pp. 257-281
    • Linsker, R.1
  • 72
    • 36849088522 scopus 로고    scopus 로고
    • Sparse MRI: The application of compressed sensing for rapid MR imaging
    • DOI 10.1002/mrm.21391
    • LustigM, Donoho D, Pauly J. 2007. Sparse MRI: the application of compressed sensing for rapidMRimaging. Magn. Reson. Med. 58(6):1182-95 (Pubitemid 350234205)
    • (2007) Magnetic Resonance in Medicine , vol.58 , Issue.6 , pp. 1182-1195
    • Lustig, M.1    Donoho, D.2    Pauly, J.M.3
  • 74
    • 0036834701 scopus 로고    scopus 로고
    • Real-time computing without stable states: A new framework for neural computation based on perturbations
    • Maass W, Natschlager T, Markram H. 2002. Real-time computing without stable states: a new framework for neural computation based on perturbations. Neural Comput. 14(11):2531-60
    • (2002) Neural Comput. , vol.14 , Issue.11 , pp. 2531-2560
    • Maass, W.1    Natschlager, T.2    Markram, H.3
  • 75
    • 74849088855 scopus 로고    scopus 로고
    • Functional, but not anatomical, separation of what andwhen in prefrontal cortex
    • MachensC, Romo R, Brody C. 2010. Functional, but not anatomical, separation of what andwhen in prefrontal cortex. J. Neurosci. 30(1):350-60
    • (2010) J. Neurosci. , vol.30 , Issue.1 , pp. 350-360
    • MacHensc Romo, R.1    Brody, C.2
  • 76
    • 0014526073 scopus 로고
    • A theory of cerebellar cortex
    • Marr D. 1969. A theory of cerebellar cortex. J. Physiol. 202(2):437-70
    • (1969) J. Physiol. , vol.202 , Issue.2 , pp. 437-470
    • Marr, D.1
  • 77
    • 79952533461 scopus 로고    scopus 로고
    • Reconstruction of complete connectivity matrix for connectomics by sampling neural connectivity with fluorescent synaptic markers
    • Mishchenko Y. 2011. Reconstruction of complete connectivity matrix for connectomics by sampling neural connectivity with fluorescent synaptic markers. J. Neurosci. Methods 196(2):289-302
    • (2011) J. Neurosci. Methods , vol.196 , Issue.2 , pp. 289-302
    • Mishchenko, Y.1
  • 78
    • 0029938380 scopus 로고    scopus 로고
    • Emergence of simple-cell receptive field properties by learning a sparse code for natural images
    • DOI 10.1038/381607a0
    • Olshausen B, Field DJ. 1996a. Emergence of simple-cell receptive field properties by learning a sparse code for natural images. Nature 381(6583):607-9 (Pubitemid 26177476)
    • (1996) Nature , vol.381 , Issue.6583 , pp. 607-609
    • Olshausen, B.A.1    Field, D.J.2
  • 80
    • 0030779611 scopus 로고    scopus 로고
    • Sparse coding with an overcomplete basis set: A strategy employed by V1?
    • DOI 10.1016/S0042-6989(97)00169-7, PII S0042698997001697
    • Olshausen B, Field D. 1997. Sparse coding with an overcomplete basis set: a strategy employed by v1? Vis. Res. 37(23):3311-25 (Pubitemid 27493805)
    • (1997) Vision Research , vol.37 , Issue.23 , pp. 3311-3325
    • Olshausen, B.A.1    Field, D.J.2
  • 81
    • 79551566720 scopus 로고    scopus 로고
    • From spiking neuron models to linear-nonlinear models
    • Ostojic S, Brunel N. 2011. From spiking neuron models to linear-nonlinear models. PLoS Comput. Biol. 7(1):e1001056
    • (2011) PLoS Comput. Biol. , vol.7 , Issue.1
    • Ostojic, S.1    Brunel, N.2
  • 82
    • 0028936695 scopus 로고
    • Continuous update with random encoding (cure): A new strategy for dynamic imaging
    • Parrish T, Hu X. 1995. Continuous update with random encoding (cure): a new strategy for dynamic imaging. Magn. Reson. Med. 33(3):326-36
    • (1995) Magn. Reson. Med. , vol.33 , Issue.3 , pp. 326-336
    • Parrish, T.1    Hu, X.2
  • 83
    • 77956001002 scopus 로고    scopus 로고
    • Role of homeostasis in learning sparse representations
    • Perrinet L. 2010. Role of homeostasis in learning sparse representations. Neural Comput. 22(7):1812-36
    • (2010) Neural Comput. , vol.22 , Issue.7 , pp. 1812-1836
    • Perrinet, L.1
  • 84
    • 77954485043 scopus 로고    scopus 로고
    • Stimulus-dependent suppression of chaos in recurrent neural networks
    • Rajan K, Abbott L, Sompolinsky H. 2010. Stimulus-dependent suppression of chaos in recurrent neural networks. Phys. Rev. E 82(1):011903
    • (2010) Phys. Rev. e , vol.82 , Issue.1 , pp. 011903
    • Rajan, K.1    Abbott, L.2    Sompolinsky, H.3
  • 86
    • 11144273669 scopus 로고
    • The perceptron: A probabilistic model for information storage and organization in the brain
    • Rosenblatt F. 1958. The perceptron: a probabilistic model for information storage and organization in the brain. Psychol. Rev. 65(6):386-408
    • (1958) Psychol. Rev. , vol.65 , Issue.6 , pp. 386-408
    • Rosenblatt, F.1
  • 87
    • 51849128608 scopus 로고    scopus 로고
    • Sparse coding via thresholding and local competition in neural circuits
    • Rozell C, Johnson D, Baraniuk R, Olshausen B. 2008. Sparse coding via thresholding and local competition in neural circuits. Neural Comput. 20(10):2526-63
    • (2008) Neural Comput. , vol.20 , Issue.10 , pp. 2526-2563
    • Rozell, C.1    Johnson, D.2    Baraniuk, R.3    Olshausen, B.4
  • 88
    • 0000755030 scopus 로고
    • Statistical mechanics of learning from examples
    • Seung H, Sompolinsky H, Tishby N. 1992. Statistical mechanics of learning from examples. Phys. Rev. A 45(8):6056-91
    • (1992) Phys. Rev. A , vol.45 , Issue.8 , pp. 6056-6091
    • Seung, H.1    Sompolinsky, H.2    Tishby, N.3
  • 89
    • 0034934777 scopus 로고    scopus 로고
    • Natural image statistics and neural representation
    • DOI 10.1146/annurev.neuro.24.1.1193
    • Simoncelli E, Olshausen B. 2001. Natural image statistics and neural representation. Annu. Rev. Neurosci. 24(1):1193-216 (Pubitemid 32695258)
    • (2001) Annual Review of Neuroscience , vol.24 , pp. 1193-1216
    • Simoncelli, E.P.1    Olshausen, B.A.2
  • 91
    • 68949147577 scopus 로고    scopus 로고
    • Generating coherent patterns of activity from chaotic neural networks
    • Sussillo D, Abbott L. 2009. Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4):544-57
    • (2009) Neuron , vol.63 , Issue.4 , pp. 544-557
    • Sussillo, D.1    Abbott, L.2
  • 93
    • 77952339435 scopus 로고    scopus 로고
    • Fluorescence applications in molecular neurobiology
    • Taraska J, Zagotta W. 2010. Fluorescence applications in molecular neurobiology. Neuron 66(2):170-89
    • (2010) Neuron , vol.66 , Issue.2 , pp. 170-189
    • Taraska, J.1    Zagotta, W.2
  • 95
    • 34250679222 scopus 로고    scopus 로고
    • Jpeg2000: Image compression fundamentals, standards and practice
    • Taubman D, Marcellin M, Rabbani M. 2002. Jpeg2000: image compression fundamentals, standards and practice. J. Electron. Imaging 11:286
    • (2002) J. Electron. Imaging , vol.11 , pp. 286
    • Taubman, D.1    Marcellin, M.2    Rabbani, M.3
  • 96
    • 0001287271 scopus 로고    scopus 로고
    • Regression shrinkage and selection via the LASSO
    • Tibshirani R. 1996. Regression shrinkage and selection via the LASSO. J. R. Stat. Soc. Ser. B (Methodol. ) 58:267-88
    • (1996) J. R. Stat. Soc. Ser. B (Methodol. ) , vol.58 , pp. 267-288
    • Tibshirani, R.1
  • 97
    • 0032495066 scopus 로고    scopus 로고
    • Independent component analysis of natural image sequences yields spatio-temporal filters similar to simple cells in primary visual cortex
    • vanHateren J, Ruderman D 1998 Independent component analysis of natural image sequences yields spatiotemporal filters similar to simple cells in primary visual cortex. Proc. R. Soc. Lond. Ser. B: Biol. Sci. 265 1412 2315-20 (Pubitemid 28561175)
    • (1998) Proceedings of the Royal Society B: Biological Sciences , vol.265 , Issue.1412 , pp. 2315-2320
    • Van Hateren, J.H.1    Ruderman, D.L.2
  • 98
    • 0032492432 scopus 로고    scopus 로고
    • Independent component filters of natural images compared with simple cells in primary visual cortex
    • vanHateren J, van der Schaaf A. 1998. Independent component filters of natural images compared with simple cells in primary visual cortex. Proc. R. Soc. Lond. Ser. B: Biol. Sci. 265(1394):359-66
    • (1998) Proc. R. Soc. Lond. Ser. B: Biol. Sci. , vol.265 , Issue.1394 , pp. 359-366
    • Vanhateren, J.1    Van Der Schaaf, A.2
  • 100
    • 65749083666 scopus 로고    scopus 로고
    • Sharp thresholds for high-dimensional and noisy sparsity recovery using L1-constrained quadratic programming (LASSO)
    • Wainwright M. 2009. Sharp thresholds for high-dimensional and noisy sparsity recovery using L1-constrained quadratic programming (LASSO). Inf. Theory IEEE Trans. 55(5):2183-202
    • (2009) Inf. Theory IEEE Trans. , vol.55 , Issue.5 , pp. 2183-2202
    • Wainwright, M.1
  • 101
    • 84864034065 scopus 로고    scopus 로고
    • High-dimensional graphical model selection using L1-regularized logistic regression
    • Wainwright M, Ravikumar P, Lafferty J. 2007. High-dimensional graphical model selection using L1-regularized logistic regression. Adv. Neural Inf. Proc. Syst. 19:1465-72
    • (2007) Adv. Neural Inf. Proc. Syst. , vol.19 , pp. 1465-1472
    • Wainwright, M.1    Ravikumar, P.2    Lafferty, J.3
  • 103
    • 2342592517 scopus 로고    scopus 로고
    • Short-term memory in orthogonal neural networks
    • White O, Lee D, Sompolinsky H. 2004. Short-term memory in orthogonal neural networks. Phys. Rev. Lett. 92(14):148102-5
    • (2004) Phys. Rev. Lett. , vol.92 , Issue.14 , pp. 148102-148105
    • White, O.1    Lee, D.2    Sompolinsky, H.3
  • 105
    • 67649610065 scopus 로고    scopus 로고
    • Gaussian-process factor analysis for low-dimensional single-trial analysis of neural population activity
    • Yu B, Cunningham J, Santhanam G, Ryu S, Shenoy K, Sahani M. 2009. Gaussian-process factor analysis for low-dimensional single-trial analysis of neural population activity. J. Neurophysiol. 102(1):614-35
    • (2009) J. Neurophysiol. , vol.102 , Issue.1 , pp. 614-635
    • Yu, B.1    Cunningham, J.2    Santhanam, G.3    Ryu, S.4    Shenoy, K.5    Sahani, M.6
  • 106
    • 61349111475 scopus 로고    scopus 로고
    • Compressed and privacy-sensitive sparse regression
    • Zhou S, Lafferty J, Wasserman L. 2009. Compressed and privacy-sensitive sparse regression. Inf. Theory IEEE Trans. 55(2):846-66
    • (2009) Inf. Theory IEEE Trans. , vol.55 , Issue.2 , pp. 846-866
    • Zhou, S.1    Lafferty, J.2    Wasserman, L.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.