-
2
-
-
33646712150
-
On the uniqueness of overcomplete dictionaries, and a practical way to retrieve them
-
DOI 10.1016/j.laa.2005.06.035, PII S0024379505003459
-
Aharon M, Elad M, Bruckstein A. 2006b. On the uniqueness of overcomplete dictionaries, and a practical way to retrieve them. Linear Algebr. Appl. 416(1):48-67 (Pubitemid 43737210)
-
(2006)
Linear Algebra and Its Applications
, vol.416
, Issue.1
, pp. 48-67
-
-
Aharon, M.1
Elad, M.2
Bruckstein, A.M.3
-
3
-
-
34548281969
-
Could information theory provide an ecological theory of sensory processing?
-
Atick J. 1992. Could information theory provide an ecological theory of sensory processing? Netw. Comput. Neural Syst. 3(2):213-51
-
(1992)
Netw. Comput. Neural Syst.
, vol.3
, Issue.2
, pp. 213-251
-
-
Atick, J.1
-
4
-
-
0000547924
-
What does the retina know about natural scenes?
-
Atick J, Redlich A. 1992. What does the retina know about natural scenes? Neural Comput. 4(2):196-210
-
(1992)
Neural Comput.
, vol.4
, Issue.2
, pp. 196-210
-
-
Atick, J.1
Redlich, A.2
-
5
-
-
85032751965
-
Compressive sensing
-
Baraniuk R. 2007. Compressive sensing. Signal Proc. Mag. IEEE 24(4):118-21
-
(2007)
Signal Proc. Mag. IEEE
, vol.24
, Issue.4
, pp. 118-121
-
-
Baraniuk, R.1
-
6
-
-
79951478824
-
More is less: Signal processing and the data deluge
-
Baraniuk R. 2011. More is less: signal processing and the data deluge. Science 331(6018):717-19
-
(2011)
Science
, vol.331
, Issue.6018
, pp. 717-719
-
-
Baraniuk, R.1
-
7
-
-
77952743002
-
Low-dimensional models for dimensionality reduction and signal recovery: A geometric perspective
-
Baraniuk R, Cevher V, Wakin M. 2010. Low-dimensional models for dimensionality reduction and signal recovery: a geometric perspective. Proc. IEEE 98(6):959-71
-
(2010)
Proc. IEEE
, vol.98
, Issue.6
, pp. 959-971
-
-
Baraniuk, R.1
Cevher, V.2
Wakin, M.3
-
8
-
-
55649115527
-
A simple proof of the restricted isometry property for random matrices
-
Baraniuk R, Davenport M, DeVore R, Wakin M. 2008. A simple proof of the restricted isometry property for random matrices. Constr. Approx. 28(3):253-63
-
(2008)
Constr. Approx.
, vol.28
, Issue.3
, pp. 253-263
-
-
Baraniuk, R.1
Davenport, M.2
Devore, R.3
Wakin, M.4
-
9
-
-
58849146227
-
Random projections of smooth manifolds
-
Baraniuk R, Wakin M. 2009. Random projections of smooth manifolds. Found. Comput. Math. 9(1):51-77
-
(2009)
Found. Comput. Math.
, vol.9
, Issue.1
, pp. 51-77
-
-
Baraniuk, R.1
Wakin, M.2
-
10
-
-
0002014402
-
Possible principles underlying the transformation of sensory messages
-
ed. WA Rosenblith New York: Wiley
-
Barlow H. 1961. Possible principles underlying the transformation of sensory messages. In Sensory Communication, ed. WA Rosenblith, pp. 217-34. New York: Wiley
-
(1961)
Sensory Communication
, pp. 217-234
-
-
Barlow, H.1
-
11
-
-
0043264798
-
Redundancy reduction revisited
-
DOI 10.1088/0954-898X/12/3/301, PII S0954898X01242638
-
Barlow H. 2001. Redundancy reduction revisited. Netw. Comput. Neural Syst. 12(3):241-53 (Pubitemid 33626945)
-
(2001)
Network: Computation in Neural Systems
, vol.12
, Issue.3
, pp. 241-253
-
-
Barlow, H.1
-
13
-
-
0030832881
-
The 'independent components' of natural scenes are edge filters
-
DOI 10.1016/S0042-6989(97)00121-1, PII S0042698997001211
-
Bell A, Sejnowski T. 1997. The independent components of natural scenes are edge filters. Vis. Res. 37(23):3327-38 (Pubitemid 27493806)
-
(1997)
Vision Research
, vol.37
, Issue.23
, pp. 3327-3338
-
-
Bell, A.J.1
Sejnowski, T.J.2
-
14
-
-
33745869085
-
Random projection, margins, kernels, and feature-selection
-
DOI 10.1007/11752790-3, Subspace, Latent Structure and Feature Selection - Statistical and Optimization Perspectives Workshop, SLSFS 2005, Revised Selected Papers
-
Blum A. 2006. Random projection, margins, kernels, and feature-selection. In Subspace, Latent Structure and Feature Selection, ed. C Saunders, MGrobelnik, S Gunn, J Shawe-Taylor, pp. 52-68. Heidelberg, Germ. : Springer (Pubitemid 44029879)
-
(2006)
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
, vol.LNCS3940
, pp. 52-68
-
-
Blum, A.1
-
15
-
-
41149136564
-
Design of a neuronal array
-
DOI 10.1523/JNEUROSCI.5259-07.2008
-
Borghuis B, Ratliff C, Smith R, Sterling P, Balasubramanian V. 2008. Design of a neuronal array. J. Neurosci. 28(12):3178-89 (Pubitemid 351442290)
-
(2008)
Journal of Neuroscience
, vol.28
, Issue.12
, pp. 3178-3189
-
-
Borghuis, B.G.1
Ratliff, C.P.2
Smith, R.G.3
Sterling, P.4
Balasubramanian, V.5
-
17
-
-
59749104367
-
From sparse solutions of systems of equations to sparse modeling of signals and images
-
Bruckstein A, Donoho D, Elad M. 2009. From sparse solutions of systems of equations to sparse modeling of signals and images. Siam Rev. 51(1):34-81
-
(2009)
Siam Rev.
, vol.51
, Issue.1
, pp. 34-81
-
-
Bruckstein, A.1
Donoho, D.2
Elad, M.3
-
18
-
-
4444234075
-
Optimal information storage and the distribution of synaptic weights: Perceptron versus Purkinje cell
-
DOI 10.1016/j.neuron.2004.08.023, PII S0896627304005288
-
Brunel N, Hakim V, Isope P, Nadal J, Barbour B. 2004. Optimal information storage and the distribution of synaptic weights: perceptron versus Purkinje cell. Neuron 43(5):745-57 (Pubitemid 39179732)
-
(2004)
Neuron
, vol.43
, Issue.5
, pp. 745-757
-
-
Brunel, N.1
Hakim, V.2
Isope, P.3
Nadal, J.-P.4
Barbour, B.5
-
19
-
-
27144489164
-
A tutorial on support vector machines for pattern recognition
-
Burges C. 1998. A tutorial on support vector machines for pattern recognition. Data Min. Knowl. Discov. 2(2):121-67 (Pubitemid 128695475)
-
(1998)
Data Mining and Knowledge Discovery
, vol.2
, Issue.2
, pp. 121-167
-
-
Burges, C.J.C.1
-
20
-
-
81255188959
-
A probabilistic and RIPless theory of compressed sensing
-
Candes E, Plan Y. 2010. A probabilistic and RIPless theory of compressed sensing. IEEE Trans. Inf. Theory 57(11)7235-54
-
(2010)
IEEE Trans. Inf. Theory
, vol.57
, Issue.11
, pp. 7235-7254
-
-
Candes, E.1
Plan, Y.2
-
21
-
-
34249687049
-
Sparsity and incoherence in compressive sampling
-
DOI 10.1088/0266-5611/23/3/008, PII S0266561107398742, 008
-
Candes E, Romberg J. 2007. Sparsity and incoherence in compressive sampling. Invers. Probl. 23(3):969-85 (Pubitemid 46838836)
-
(2007)
Inverse Problems
, vol.23
, Issue.3
, pp. 969-985
-
-
Candes, E.1
Romberg, J.2
-
24
-
-
33947416035
-
Near-optimal signal recovery from random projections: Universal encoding strategies?
-
DOI 10.1109/TIT.2006.885507
-
Candes E, TaoT. 2006. Near-optimal signal recovery from random projections: universal encoding strategies? IEEE Trans. Inf. Theory 52(12):5406-25 (Pubitemid 46445381)
-
(2006)
IEEE Transactions on Information Theory
, vol.52
, Issue.12
, pp. 5406-5425
-
-
Candes, E.J.1
Tao, T.2
-
25
-
-
85032750937
-
An introduction to compressive sampling
-
Candes E, Wakin M. 2008. An introduction to compressive sampling. IEEE Sig. Proc. Mag. 25(2):21-30
-
(2008)
IEEE Sig. Proc. Mag.
, vol.25
, Issue.2
, pp. 21-30
-
-
Candes, E.1
Wakin, M.2
-
26
-
-
77952676839
-
Lensless wide-field fluorescent imaging on a chip using compressive decoding of sparse objects
-
Coskun A, Sencan I, Su T, Ozcan A. 2010. Lensless wide-field fluorescent imaging on a chip using compressive decoding of sparse objects. Opt. Express 18(10):10510-23
-
(2010)
Opt. Express
, vol.18
, Issue.10
, pp. 10510-10523
-
-
Coskun, A.1
Sencan, I.2
Su, T.3
Ozcan, A.4
-
29
-
-
0037236821
-
An elementary proof of a theorem of Johnson and Lindenstrauss
-
Dasgupta S, Gupta A. 2003. An elementary proof of a theorem of Johnson and Lindenstrauss. Random Struct. Algorithms 22(1):60-65
-
(2003)
Random Struct. Algorithms
, vol.22
, Issue.1
, pp. 60-65
-
-
Dasgupta, S.1
Gupta, A.2
-
30
-
-
67649811101
-
Independent component analysis for brain fMRI does not select for independence
-
Daubechies I, Roussos E, Takerkart S, Benharrosh M, Golden C, et al. 2009. Independent component analysis for brain fMRI does not select for independence. Proc. Natl. Acad. Sci. 106(26):10415-20
-
(2009)
Proc. Natl. Acad. Sci.
, vol.106
, Issue.26
, pp. 10415-10420
-
-
Daubechies, I.1
Roussos, E.2
Takerkart, S.3
Benharrosh, M.4
Golden, C.5
-
31
-
-
34548277499
-
The smashed filter for compressive classification and target recognition
-
San Jose, CA
-
Davenport M, Duarte M, Wakin M, Laska J, Takhar D, et al. 2007. The smashed filter for compressive classification and target recognition. Proc. Comput. Imaging V SPIE Electron Imaging, San Jose, CA
-
(2007)
Proc. Comput. Imaging v SPIE Electron Imaging
-
-
Davenport, M.1
Duarte, M.2
Wakin, M.3
Laska, J.4
Takhar, D.5
-
33
-
-
0346061723
-
High-dimensional data analysis: The curses and blessings of dimensionality
-
Donoho D. 2000. High-dimensional data analysis: the curses and blessings of dimensionality. AMS Math Challenges Lecture, pp. 1-32
-
(2000)
AMS Math Challenges Lecture
, pp. 1-32
-
-
Donoho, D.1
-
34
-
-
33645712892
-
-
IEEE Trans. Inf. Theory
-
Donoho D. 2006. Compressed sensing. IEEE Trans. Inf. Theory 52(4):1289-306
-
(2006)
Compressed Sensing.
, vol.52
, Issue.4
, pp. 1289-1306
-
-
Donoho, D.1
-
38
-
-
85032752277
-
Single-pixel imaging via compressive sampling
-
Duarte M, DavenportM, TakharD, Laska J, Sun T, et al. 2008. Single-pixel imaging via compressive sampling. Signal Proc. Mag. IEEE 25(2):83-91
-
(2008)
Signal Proc. Mag. IEEE
, vol.25
, Issue.2
, pp. 83-91
-
-
Duarte, M.1
Takhard, D.2
Laska, J.3
Sun, T.4
-
40
-
-
48149091763
-
Multiscale random projections for compressive classification
-
Presented at San Antonio, TX
-
Duarte M, Davenport M, Wakin M, Laska J, Takhar D, et al. 2007. Multiscale random projections for compressive classification. Presented at IEEE Int. Conf. Image Process (ICIP) Int. Conf. 6:VI161-64, San Antonio, TX
-
(2007)
IEEE Int. Conf. Image Process (ICIP) Int. Conf.
, vol.6
-
-
Duarte, M.1
Davenport, M.2
Wakin, M.3
Laska, J.4
Takhar, D.5
-
41
-
-
3242708140
-
Least angle regression
-
DOI 10.1214/009053604000000067
-
Efron B, Hastie T, Johnstone I, Tibshirani R. 2004. Least angle regression. Ann. Stat. 32(2):407-99 (Pubitemid 41250302)
-
(2004)
Annals of Statistics
, vol.32
, Issue.2
, pp. 407-499
-
-
Efron, B.1
Hastie, T.2
Johnstone, I.3
Tibshirani, R.4
Ishwaran, H.5
Knight, K.6
Loubes, J.-M.7
Massart, P.8
Madigan, D.9
Ridgeway, G.10
Rosset, S.11
Zhu, J.I.12
Stine, R.A.13
Turlach, B.A.14
Weisberg, S.15
Hastie, T.16
Johnstone, I.17
Tibshirani, R.18
-
43
-
-
41549129293
-
One-dimensional dynamics of attention and decision making in LIP
-
DOI 10.1016/j.neuron.2008.01.038, PII S0896627308001682
-
Ganguli S, Bisley J, Roitman J, Shadlen M, Goldberg M, Miller K. 2008a. One-dimensional dynamics of attention and decision making in lip. Neuron 58(1):15-25 (Pubitemid 351467033)
-
(2008)
Neuron
, vol.58
, Issue.1
, pp. 15-25
-
-
Ganguli, S.1
Bisley, J.W.2
Roitman, J.D.3
Shadlen, M.N.4
Goldberg, M.E.5
Miller, K.D.6
-
45
-
-
85162050505
-
Short-term memory in neuronal networks through dynamical compressed sensing
-
Ganguli S, Sompolinsky H. 2010a. Short-term memory in neuronal networks through dynamical compressed sensing. Neural Inf. Process. Syst. (NIPS) 23:667-75
-
(2010)
Neural Inf. Process. Syst. (NIPS)
, vol.23
, pp. 667-675
-
-
Ganguli, S.1
Sompolinsky, H.2
-
46
-
-
77952044476
-
Statistical mechanics of compressed sensing
-
Ganguli S, SompolinskyH. 2010b. Statistical mechanics of compressed sensing. Phys. Rev. Lett. 104(18):188701
-
(2010)
Phys. Rev. Lett.
, vol.104
, Issue.18
, pp. 188701
-
-
Ganguli, S.1
Sompolinsky, H.2
-
47
-
-
36149029786
-
The space of interactions in neural network models
-
Gardner E. 1988. The space of interactions in neural network models. J. Phys. A 21:257-70
-
(1988)
J. Phys. A
, vol.21
, pp. 257-270
-
-
Gardner, E.1
-
48
-
-
47049124348
-
Compressive sampling for signal classification
-
Presented at 40th, Asilomar
-
Haupt J, Castro R, Nowak R, Fudge G, Yeh A. 2006. Compressive sampling for signal classification. Presented at Conf. Signals, Syst. Comput. (ACSSC), 40th, Asilomar, pp. 1430-34
-
(2006)
Conf. Signals, Syst. Comput. (ACSSC)
, pp. 1430-1434
-
-
Haupt, J.1
Castro, R.2
Nowak, R.3
Fudge, G.4
Yeh, A.5
-
50
-
-
84862647290
-
Ramsey theory reveals the conditions when sparse coding on subsampled data is unique
-
Hillar CJ, Sommer FT. 2011. Ramsey theory reveals the conditions when sparse coding on subsampled data is unique. ArXiv abs/1106. 3616
-
(2011)
ArXiv abs/1106.
, pp. 3616
-
-
Hillar, C.J.1
Sommer, F.T.2
-
51
-
-
35649001607
-
A quantitative description of membrane current and its application to conduction and excitation in nerve
-
Hodgkin A, Huxley A. 1952. A quantitative description of membrane current and its application to conduction and excitation in nerve. J. Physiol. 117:500-44
-
(1952)
J. Physiol.
, vol.117
, pp. 500-544
-
-
Hodgkin, A.1
Huxley, A.2
-
52
-
-
0020118274
-
Neural networks and physical systems with emergent collective computational abilities
-
Hopfield J. 1982. Neural networks and physical systems with emergent collective computational abilities. Proc. Natl. Acad. Sci. USA 79(8):2554-59
-
(1982)
Proc. Natl. Acad. Sci. USA
, vol.79
, Issue.8
, pp. 2554-2559
-
-
Hopfield, J.1
-
53
-
-
84555179514
-
Reconstruction of sparse circuits using multi-neuronal excitation (rescume)
-
Hu T, Chklovskii D. 2009. Reconstruction of sparse circuits using multi-neuronal excitation (rescume). Adv. Neural Inf. Proc. Syst. 22:790-98
-
(2009)
Adv. Neural Inf. Proc. Syst.
, vol.22
, pp. 790-798
-
-
Hu, T.1
Chklovskii, D.2
-
54
-
-
84862687572
-
Early sensory processing as predictive coding: Subtracting sparse approximations by circuit dynamics
-
Hu T, Druckmann S, Chklovskii D. 2011. Early sensory processing as predictive coding: subtracting sparse approximations by circuit dynamics. Front. Neurosci. Conf. Abs: COSYNE
-
(2011)
Front. Neurosci. Conf. Abs: COSYNE
-
-
Hu, T.1
Druckmann, S.2
Chklovskii, D.3
-
55
-
-
79957657604
-
Statistical models of natural images and cortical visual representation
-
Hyvarinen A. 2010. Statistical models of natural images and cortical visual representation. Top. Cogn. Sci. 2:251-64
-
(2010)
Top. Cogn. Sci.
, vol.2
, pp. 251-264
-
-
Hyvarinen, A.1
-
56
-
-
0031644241
-
Approximate nearest neighbors: Towards removing the curse of dimensionality
-
30th
-
Indyk P, Motwani R. 1998. Approximate nearest neighbors: towards removing the curse of dimensionality. Proc. Annu. ACM Symp. Theory Comput. , 30th, pp. 604-13
-
(1998)
Proc. Annu. ACM Symp. Theory Comput.
, pp. 604-613
-
-
Indyk, P.1
Motwani, R.2
-
57
-
-
85162025941
-
Deciphering subsampled data: Adaptive compressive sampling as a principle of brain communication
-
Isely G, Hillar CJ, Sommer FT. 2010. Deciphering subsampled data: adaptive compressive sampling as a principle of brain communication. Adv. Neural Inf. Proc. Syst. (NIPS) 23:910-18
-
(2010)
Adv. Neural Inf. Proc. Syst. (NIPS)
, Issue.23
, pp. 910-918
-
-
Isely, G.1
Hillar, C.J.2
Sommer, F.T.3
-
59
-
-
1842421269
-
Harnessing nonlinearity: Predicting chaotic systems and saving energy in wireless communication
-
Jaeger H, Haas H. 2004. Harnessing nonlinearity: predicting chaotic systems and saving energy in wireless communication. Science 304(5667):78-81
-
(2004)
Science
, vol.304
, Issue.5667
, pp. 78-81
-
-
Jaeger, H.1
Haas, H.2
-
60
-
-
0001654702
-
Extensions of Lipschitz mappings into a Hilbert space
-
Johnson W, Lindenstrauss J. 1984. Extensions of Lipschitz mappings into a Hilbert space. Contemp. Math. 26:189-206
-
(1984)
Contemp. Math.
, vol.26
, pp. 189-206
-
-
Johnson, W.1
Lindenstrauss, J.2
-
61
-
-
72449137292
-
A typical reconstruction limit for compressed sensing based on l p-norm minimization
-
Kabashima Y, Wadayama T, Tanaka T. 2009. A typical reconstruction limit for compressed sensing based on l p-norm minimization. J. Stat. Mech. L09003
-
(2009)
J. Stat. Mech.
-
-
Kabashima, Y.1
Wadayama, T.2
Tanaka, T.3
-
62
-
-
85162334998
-
Accounting for network effects in neuronal responses using l1 regularized point process models
-
Kelly R, Smith M, Kass R, Lee T. 2010. Accounting for network effects in neuronal responses using l1 regularized point process models. Neural Inf. Proc. Syst. (NIPS) 23:1099-107
-
(2010)
Neural Inf. Proc. Syst. (NIPS)
, Issue.23
, pp. 1099-1107
-
-
Kelly, R.1
Smith, M.2
Kass, R.3
Lee, T.4
-
63
-
-
34447500578
-
Object category structure in response patterns of neuronal population in monkey inferior temporal cortex
-
DOI 10.1152/jn.00024.2007
-
Kiani R, Esteky H, Mirpour K, Tanaka K. 2007. Object category structure in response patterns of neuronal population in monkey inferior temporal cortex. J. Neurophysiol. 97(6):4296-309 (Pubitemid 47080657)
-
(2007)
Journal of Neurophysiology
, vol.97
, Issue.6
, pp. 4296-4309
-
-
Kiani, R.1
Esteky, H.2
Mirpour, K.3
Tanaka, K.4
-
64
-
-
80053606112
-
Sparse incomplete representations: A novel role for olfactory granule cells
-
Koulakov A, Rinberg D. 2011. Sparse incomplete representations: a novel role for olfactory granule cells. Neuron 72(1):124-36
-
(2011)
Neuron
, vol.72
, Issue.1
, pp. 124-136
-
-
Koulakov, A.1
Rinberg, D.2
-
65
-
-
0037313218
-
Dictionary learning algorithms for sparse representation
-
DOI 10.1162/089976603762552951
-
Kreutz-Delgado K, Murray J, Rao B, Engan K, Lee T, Sejnowski T. 2003. Dictionary learning algorithms for sparse representation. Neural Comput. 15(2):349-96 (Pubitemid 37049825)
-
(2003)
Neural Computation
, vol.15
, Issue.2
, pp. 349-396
-
-
Kreutz-Delgado, K.1
Murray, J.F.2
Rao, B.D.3
Engan, K.4
Lee, T.-W.5
Sejnowski, T.J.6
-
66
-
-
57649196582
-
Matching categorical object representations in inferior temporal cortex of man and monkey
-
Kriegeskorte N, Mur M, Ruff D, Kiani R, Bodurka J, et al. 2008. Matching categorical object representations in inferior temporal cortex of man and monkey. Neuron 60(6):1126-41
-
(2008)
Neuron
, vol.60
, Issue.6
, pp. 1126-1141
-
-
Kriegeskorte, N.1
Mur, M.2
Ruff, D.3
Kiani, R.4
Bodurka, J.5
-
68
-
-
70049111780
-
Efficient structure learning ofMarkov networks using L1 regularization
-
Lee S, Ganapathi V, KollerD. 2006a. Efficient structure learning ofMarkov networks using L1 regularization. Neural Inf. Process. Syst. (NIPS) 19:817-24
-
(2006)
Neural Inf. Process. Syst. (NIPS)
, vol.19
, pp. 817-824
-
-
Lee, S.1
Ganapathi, V.2
Koller, D.3
-
70
-
-
0036212160
-
Efficient coding of natural sounds
-
DOI 10.1038/nn831
-
Lewicki M. 2002. Efficient coding of natural sounds. Nat. Neurosci. 5(4):356-63 (Pubitemid 34279816)
-
(2002)
Nature Neuroscience
, vol.5
, Issue.4
, pp. 356-363
-
-
Lewicki, M.S.1
-
71
-
-
0025318244
-
Perceptual neural organization: Some approaches based on network models and information theory
-
Linsker R. 1990. Perceptual neural organization: some approaches based on network models and information theory. Annu. Rev. Neurosci. 13(1):257-81 (Pubitemid 20100651)
-
(1990)
Annual Review of Neuroscience
, vol.13
, pp. 257-281
-
-
Linsker, R.1
-
72
-
-
36849088522
-
Sparse MRI: The application of compressed sensing for rapid MR imaging
-
DOI 10.1002/mrm.21391
-
LustigM, Donoho D, Pauly J. 2007. Sparse MRI: the application of compressed sensing for rapidMRimaging. Magn. Reson. Med. 58(6):1182-95 (Pubitemid 350234205)
-
(2007)
Magnetic Resonance in Medicine
, vol.58
, Issue.6
, pp. 1182-1195
-
-
Lustig, M.1
Donoho, D.2
Pauly, J.M.3
-
73
-
-
85032751466
-
Compressed sensing MRI
-
Lustig M, Donoho D, Santos J, Pauly J. 2008. Compressed sensing MRI. Signal Proc. Mag. IEEE 25(2):72-82
-
(2008)
Signal Proc. Mag. IEEE
, vol.25
, Issue.2
, pp. 72-82
-
-
Lustig, M.1
Donoho, D.2
Santos, J.3
Pauly, J.4
-
74
-
-
0036834701
-
Real-time computing without stable states: A new framework for neural computation based on perturbations
-
Maass W, Natschlager T, Markram H. 2002. Real-time computing without stable states: a new framework for neural computation based on perturbations. Neural Comput. 14(11):2531-60
-
(2002)
Neural Comput.
, vol.14
, Issue.11
, pp. 2531-2560
-
-
Maass, W.1
Natschlager, T.2
Markram, H.3
-
75
-
-
74849088855
-
Functional, but not anatomical, separation of what andwhen in prefrontal cortex
-
MachensC, Romo R, Brody C. 2010. Functional, but not anatomical, separation of what andwhen in prefrontal cortex. J. Neurosci. 30(1):350-60
-
(2010)
J. Neurosci.
, vol.30
, Issue.1
, pp. 350-360
-
-
MacHensc Romo, R.1
Brody, C.2
-
76
-
-
0014526073
-
A theory of cerebellar cortex
-
Marr D. 1969. A theory of cerebellar cortex. J. Physiol. 202(2):437-70
-
(1969)
J. Physiol.
, vol.202
, Issue.2
, pp. 437-470
-
-
Marr, D.1
-
77
-
-
79952533461
-
Reconstruction of complete connectivity matrix for connectomics by sampling neural connectivity with fluorescent synaptic markers
-
Mishchenko Y. 2011. Reconstruction of complete connectivity matrix for connectomics by sampling neural connectivity with fluorescent synaptic markers. J. Neurosci. Methods 196(2):289-302
-
(2011)
J. Neurosci. Methods
, vol.196
, Issue.2
, pp. 289-302
-
-
Mishchenko, Y.1
-
78
-
-
0029938380
-
Emergence of simple-cell receptive field properties by learning a sparse code for natural images
-
DOI 10.1038/381607a0
-
Olshausen B, Field DJ. 1996a. Emergence of simple-cell receptive field properties by learning a sparse code for natural images. Nature 381(6583):607-9 (Pubitemid 26177476)
-
(1996)
Nature
, vol.381
, Issue.6583
, pp. 607-609
-
-
Olshausen, B.A.1
Field, D.J.2
-
80
-
-
0030779611
-
Sparse coding with an overcomplete basis set: A strategy employed by V1?
-
DOI 10.1016/S0042-6989(97)00169-7, PII S0042698997001697
-
Olshausen B, Field D. 1997. Sparse coding with an overcomplete basis set: a strategy employed by v1? Vis. Res. 37(23):3311-25 (Pubitemid 27493805)
-
(1997)
Vision Research
, vol.37
, Issue.23
, pp. 3311-3325
-
-
Olshausen, B.A.1
Field, D.J.2
-
81
-
-
79551566720
-
From spiking neuron models to linear-nonlinear models
-
Ostojic S, Brunel N. 2011. From spiking neuron models to linear-nonlinear models. PLoS Comput. Biol. 7(1):e1001056
-
(2011)
PLoS Comput. Biol.
, vol.7
, Issue.1
-
-
Ostojic, S.1
Brunel, N.2
-
82
-
-
0028936695
-
Continuous update with random encoding (cure): A new strategy for dynamic imaging
-
Parrish T, Hu X. 1995. Continuous update with random encoding (cure): a new strategy for dynamic imaging. Magn. Reson. Med. 33(3):326-36
-
(1995)
Magn. Reson. Med.
, vol.33
, Issue.3
, pp. 326-336
-
-
Parrish, T.1
Hu, X.2
-
83
-
-
77956001002
-
Role of homeostasis in learning sparse representations
-
Perrinet L. 2010. Role of homeostasis in learning sparse representations. Neural Comput. 22(7):1812-36
-
(2010)
Neural Comput.
, vol.22
, Issue.7
, pp. 1812-1836
-
-
Perrinet, L.1
-
84
-
-
77954485043
-
Stimulus-dependent suppression of chaos in recurrent neural networks
-
Rajan K, Abbott L, Sompolinsky H. 2010. Stimulus-dependent suppression of chaos in recurrent neural networks. Phys. Rev. E 82(1):011903
-
(2010)
Phys. Rev. e
, vol.82
, Issue.1
, pp. 011903
-
-
Rajan, K.1
Abbott, L.2
Sompolinsky, H.3
-
86
-
-
11144273669
-
The perceptron: A probabilistic model for information storage and organization in the brain
-
Rosenblatt F. 1958. The perceptron: a probabilistic model for information storage and organization in the brain. Psychol. Rev. 65(6):386-408
-
(1958)
Psychol. Rev.
, vol.65
, Issue.6
, pp. 386-408
-
-
Rosenblatt, F.1
-
87
-
-
51849128608
-
Sparse coding via thresholding and local competition in neural circuits
-
Rozell C, Johnson D, Baraniuk R, Olshausen B. 2008. Sparse coding via thresholding and local competition in neural circuits. Neural Comput. 20(10):2526-63
-
(2008)
Neural Comput.
, vol.20
, Issue.10
, pp. 2526-2563
-
-
Rozell, C.1
Johnson, D.2
Baraniuk, R.3
Olshausen, B.4
-
88
-
-
0000755030
-
Statistical mechanics of learning from examples
-
Seung H, Sompolinsky H, Tishby N. 1992. Statistical mechanics of learning from examples. Phys. Rev. A 45(8):6056-91
-
(1992)
Phys. Rev. A
, vol.45
, Issue.8
, pp. 6056-6091
-
-
Seung, H.1
Sompolinsky, H.2
Tishby, N.3
-
89
-
-
0034934777
-
Natural image statistics and neural representation
-
DOI 10.1146/annurev.neuro.24.1.1193
-
Simoncelli E, Olshausen B. 2001. Natural image statistics and neural representation. Annu. Rev. Neurosci. 24(1):1193-216 (Pubitemid 32695258)
-
(2001)
Annual Review of Neuroscience
, vol.24
, pp. 1193-1216
-
-
Simoncelli, E.P.1
Olshausen, B.A.2
-
91
-
-
68949147577
-
Generating coherent patterns of activity from chaotic neural networks
-
Sussillo D, Abbott L. 2009. Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4):544-57
-
(2009)
Neuron
, vol.63
, Issue.4
, pp. 544-557
-
-
Sussillo, D.1
Abbott, L.2
-
92
-
-
84870538154
-
A new compressive imaging camera architecture using optical-domain compression
-
San Jose, CA
-
Takhar D, Laska J, Wakin M, Duarte M, Baron D, et al. 2006. A new compressive imaging camera architecture using optical-domain compression. In Proc. Comput. Imaging IV Imaging, San Jose, CA
-
(2006)
Proc. Comput. Imaging IV Imaging
-
-
Takhar, D.1
Laska, J.2
Wakin, M.3
Duarte, M.4
Baron, D.5
-
93
-
-
77952339435
-
Fluorescence applications in molecular neurobiology
-
Taraska J, Zagotta W. 2010. Fluorescence applications in molecular neurobiology. Neuron 66(2):170-89
-
(2010)
Neuron
, vol.66
, Issue.2
, pp. 170-189
-
-
Taraska, J.1
Zagotta, W.2
-
95
-
-
34250679222
-
Jpeg2000: Image compression fundamentals, standards and practice
-
Taubman D, Marcellin M, Rabbani M. 2002. Jpeg2000: image compression fundamentals, standards and practice. J. Electron. Imaging 11:286
-
(2002)
J. Electron. Imaging
, vol.11
, pp. 286
-
-
Taubman, D.1
Marcellin, M.2
Rabbani, M.3
-
96
-
-
0001287271
-
Regression shrinkage and selection via the LASSO
-
Tibshirani R. 1996. Regression shrinkage and selection via the LASSO. J. R. Stat. Soc. Ser. B (Methodol. ) 58:267-88
-
(1996)
J. R. Stat. Soc. Ser. B (Methodol. )
, vol.58
, pp. 267-288
-
-
Tibshirani, R.1
-
97
-
-
0032495066
-
Independent component analysis of natural image sequences yields spatio-temporal filters similar to simple cells in primary visual cortex
-
vanHateren J, Ruderman D 1998 Independent component analysis of natural image sequences yields spatiotemporal filters similar to simple cells in primary visual cortex. Proc. R. Soc. Lond. Ser. B: Biol. Sci. 265 1412 2315-20 (Pubitemid 28561175)
-
(1998)
Proceedings of the Royal Society B: Biological Sciences
, vol.265
, Issue.1412
, pp. 2315-2320
-
-
Van Hateren, J.H.1
Ruderman, D.L.2
-
98
-
-
0032492432
-
Independent component filters of natural images compared with simple cells in primary visual cortex
-
vanHateren J, van der Schaaf A. 1998. Independent component filters of natural images compared with simple cells in primary visual cortex. Proc. R. Soc. Lond. Ser. B: Biol. Sci. 265(1394):359-66
-
(1998)
Proc. R. Soc. Lond. Ser. B: Biol. Sci.
, vol.265
, Issue.1394
, pp. 359-366
-
-
Vanhateren, J.1
Van Der Schaaf, A.2
-
100
-
-
65749083666
-
Sharp thresholds for high-dimensional and noisy sparsity recovery using L1-constrained quadratic programming (LASSO)
-
Wainwright M. 2009. Sharp thresholds for high-dimensional and noisy sparsity recovery using L1-constrained quadratic programming (LASSO). Inf. Theory IEEE Trans. 55(5):2183-202
-
(2009)
Inf. Theory IEEE Trans.
, vol.55
, Issue.5
, pp. 2183-2202
-
-
Wainwright, M.1
-
101
-
-
84864034065
-
High-dimensional graphical model selection using L1-regularized logistic regression
-
Wainwright M, Ravikumar P, Lafferty J. 2007. High-dimensional graphical model selection using L1-regularized logistic regression. Adv. Neural Inf. Proc. Syst. 19:1465-72
-
(2007)
Adv. Neural Inf. Proc. Syst.
, vol.19
, pp. 1465-1472
-
-
Wainwright, M.1
Ravikumar, P.2
Lafferty, J.3
-
103
-
-
2342592517
-
Short-term memory in orthogonal neural networks
-
White O, Lee D, Sompolinsky H. 2004. Short-term memory in orthogonal neural networks. Phys. Rev. Lett. 92(14):148102-5
-
(2004)
Phys. Rev. Lett.
, vol.92
, Issue.14
, pp. 148102-148105
-
-
White, O.1
Lee, D.2
Sompolinsky, H.3
-
104
-
-
67651046180
-
Advances in light microscopy for neuroscience
-
Wilt B, Burns L, Ho E, Ghosh K, Mukamel E, Schnitzer M. 2009. Advances in light microscopy for neuroscience. Annu. Rev. Neurosci. 32:435-506
-
(2009)
Annu. Rev. Neurosci.
, vol.32
, pp. 435-506
-
-
Wilt, B.1
Burns, L.2
Ho, E.3
Ghosh, K.4
Mukamel, E.5
Schnitzer, M.6
-
105
-
-
67649610065
-
Gaussian-process factor analysis for low-dimensional single-trial analysis of neural population activity
-
Yu B, Cunningham J, Santhanam G, Ryu S, Shenoy K, Sahani M. 2009. Gaussian-process factor analysis for low-dimensional single-trial analysis of neural population activity. J. Neurophysiol. 102(1):614-35
-
(2009)
J. Neurophysiol.
, vol.102
, Issue.1
, pp. 614-635
-
-
Yu, B.1
Cunningham, J.2
Santhanam, G.3
Ryu, S.4
Shenoy, K.5
Sahani, M.6
|