메뉴 건너뛰기




Volumn 13, Issue 6, 2009, Pages 984-989

Mutual information preconditioning improves structure learning of bayesian networks from medical databases

Author keywords

Bayesian network (BN); Biomedical data; Mutual information (MI); Structural learning

Indexed keywords

BAYESIAN NETWORKS (BNS); BINARIZATIONS; BINARY MATRIX; BIOMEDICAL DATA; GREEDY SEARCH; MEDICAL DATA SETS; MEDICAL DATABASE; MEDICAL DIAGNOSIS; MUTUAL INFORMATION (MI); MUTUAL INFORMATIONS; NETWORK STRUCTURES; OPTIMAL TREATMENT; SCORE ALGORITHM; SQUARE MATRICES; STRUCTURAL LEARNING; STRUCTURE-LEARNING; TREATMENT OUTCOMES;

EID: 70449567219     PISSN: 10897771     EISSN: None     Source Type: Journal    
DOI: 10.1109/TITB.2009.2026273     Document Type: Article
Times cited : (17)

References (36)
  • 4
    • 4544365481 scopus 로고    scopus 로고
    • Deal: A package for learning Bayesian networks
    • S. G. Bøttcher and C. Dethlefsen, "Deal: A package for learning Bayesian networks," J. Statist. Softw., vol.8, pp. 1-40, 2003.
    • (2003) J. Statist. Softw. , vol.8 , pp. 1-40
    • Bøttcher, S.G.1    Dethlefsen, C.2
  • 5
    • 33847202915 scopus 로고    scopus 로고
    • Ph.D. dissertation, Dept. Math. Sci., Aalborg Univ., Aalborg, Denmark
    • S. G. Bøttcher, "Learning conditional Gaussian networks," Ph.D. dissertation, Dept. Math. Sci., Aalborg Univ., Aalborg, Denmark, 2005.
    • (2005) Learning Conditional Gaussian Networks
    • Bøttcher, S.G.1
  • 6
    • 34249761849 scopus 로고
    • Learning Bayesian networks-The combination of knowledge and statistical-data
    • D. Heckerman, D. Geiger, and D. M. Chickering, "Learning Bayesian networks-The combination of knowledge and statistical-data," Mach. Learn., vol.20, pp. 197-243, 1995.
    • (1995) Mach. Learn. , vol.20 , pp. 197-243
    • Heckerman, D.1    Geiger, D.2    Chickering, D.M.3
  • 11
    • 0036567524 scopus 로고    scopus 로고
    • Learning Bayesian networks from data: An information-theory based approach
    • J. Cheng, R. Greiner, J. Kelly, D. Bell, andW. R. Liu, "Learning Bayesian networks from data: An information-theory based approach," Artif. Intell., vol.137, pp. 43-90, 2002.
    • (2002) Artif. Intell. , vol.137 , pp. 43-90
    • Cheng, J.1    Greiner, R.2    Kelly, J.3    Bell, D.4    Liu, W.R.5
  • 12
    • 0008605871 scopus 로고
    • Kutat́o: An entropy-driven system for construction of probabilistic expert systems from databases
    • Stanford Univ., Stanford, CA, Tech. Rep. KSL-90-122
    • E. Herskovits, G. Cooper, and U. Stanford, "Kutat́o: An entropy-driven system for construction of probabilistic expert systems from databases," Knowl. Syst. Lab., Med. Comput. Sci., Stanford Univ., Stanford, CA, Tech. Rep. KSL-90-122, 1990.
    • (1990) Knowl. Syst. Lab., Med. Comput. Sci.
    • Herskovits, E.1    Cooper, G.2    Stanford, U.3
  • 13
    • 85017343247 scopus 로고
    • Probabilistic network construction using the minimum description length principle
    • R. R. Bouckaert, "Probabilistic network construction using the minimum description length principle," Lect. Notes Comput. Sci., vol.747, pp. 41- 41, 1993.
    • (1993) Lect. Notes Comput. Sci. , vol.747 , pp. 41-41
    • Bouckaert, R.R.1
  • 14
    • 34249832377 scopus 로고
    • A Bayesian method for the induction of probabilistic betworks from data
    • G. F. Cooper and E. Herskovits, "A Bayesian method for the induction of probabilistic betworks from data," Mach. Learn., vol.9, pp. 309-347, 1992.
    • (1992) Mach. Learn. , vol.9 , pp. 309-347
    • Cooper, G.F.1    Herskovits, E.2
  • 17
    • 0013268908 scopus 로고    scopus 로고
    • A branch-and-bound algorithm for MDL learning Bayesian networks
    • J. Tian, "A branch-and-bound algorithm for MDL learning Bayesian networks," in Proc. 16th Conf. Uncertainty Artif. Intell., 2000, pp. 580-588.
    • (2000) Proc. 16th Conf. Uncertainty Artif. Intell. , pp. 580-588
    • Tian, J.1
  • 18
    • 0030245966 scopus 로고    scopus 로고
    • Structure learning of Bayesian networks by genetic algorithms: Aperformance analysis of control parameters
    • Sep.
    • P. Larranaga, M. Poza, Y. Yurramendi, R. H. Murga, and C. M. H. Kuijpers, "Structure learning of Bayesian networks by genetic algorithms: Aperformance analysis of control parameters," IEEE Trans. Pattern Anal. Mach. Intell., vol.18, no.9, pp. 912-926, Sep. 1996.
    • (1996) IEEE Trans. Pattern Anal. Mach. Intell. , vol.18 , Issue.9 , pp. 912-926
    • Larranaga, P.1    Poza, M.2    Yurramendi, Y.3    Murga, R.H.4    Kuijpers, C.M.H.5
  • 19
  • 21
    • 0037322292 scopus 로고    scopus 로고
    • Learning Bayesian networks in the space of structures by estimation of distribution algorithms
    • R. Blanco, I. Inza, and P. Larranga, "Learning Bayesian networks in the space of structures by estimation of distribution algorithms," Int. J. Intell. Syst., vol.18, pp. 205-220, 2003.
    • (2003) Int. J. Intell. Syst. , vol.18 , pp. 205-220
    • Blanco, R.1    Inza, I.2    Larranga, P.3
  • 24
    • 0001173999 scopus 로고
    • Construction of Bayesian network structures from data: A brief survey and an efficient algorithm
    • M. Singh and M. Valtorta, "Construction of Bayesian network structures from data: A brief survey and an efficient algorithm," Int. J. Approx. Reason., vol.12, pp. 111-131, 1995.
    • (1995) Int. J. Approx. Reason. , vol.12 , pp. 111-131
    • Singh, M.1    Valtorta, M.2
  • 25
    • 0002516745 scopus 로고    scopus 로고
    • A hybrid anytime algorithm for the construction of causal models from sparse data
    • D. Dash and M. Druzdzel, "A hybrid anytime algorithm for the construction of causal models from sparse data," in Proc. 15th Int. Conf. Uncertainty Artif. Intell., 1999, pp. 142-149.
    • (1999) Proc. 15th Int. Conf. Uncertainty Artif. Intell. , pp. 142-149
    • Dash, D.1    Druzdzel, M.2
  • 26
    • 0035452682 scopus 로고    scopus 로고
    • A hybrid methodology for learning belief networks: BENEDICT
    • DOI 10.1016/S0888-613X(01)00041-X, PII S0888613X0100041X
    • S. Acid and L. M. de Campos, "A hybrid methodology for learning belief networks: BENEDICT," Int. J. Approx. Reason., vol.27, pp. 235-262, 2001. (Pubitemid 32610603)
    • (2001) International Journal of Approximate Reasoning , vol.27 , Issue.3 , pp. 235-262
    • Acid, S.1    De Campos, L.M.2
  • 28
    • 84856043672 scopus 로고
    • A mathematical theory of communications
    • C. E. Shannon and W. Weaver, "A mathematical theory of communications," Bell Syst. Tech. J., vol.27, pp. 632-656, 1948.
    • (1948) Bell Syst. Tech. J. , vol.27 , pp. 632-656
    • Shannon, C.E.1    Weaver, W.2
  • 29
    • 84937652953 scopus 로고
    • Logical basis for information theory and probability theory
    • Sep.
    • A. Kolmogorov, "Logical basis for information theory and probability theory," IEEE Trans. Inf. Theory, vol.IT-14, no.5, pp. 662-664, Sep. 1968.
    • (1968) IEEE Trans. Inf. Theory , vol.IT-14 , Issue.5 , pp. 662-664
    • Kolmogorov, A.1
  • 30
  • 31
    • 0035661275 scopus 로고    scopus 로고
    • Application of the mutual information criterion for feature selection in computeraided diagnosis
    • G. D. Tourassi, E. D. Frederick,M. K.Markey, and C. E. Floyd, "Application of the mutual information criterion for feature selection in computeraided diagnosis," Med. Phys., vol.28, pp. 2394-2402, 2001.
    • (2001) Med. Phys. , vol.28 , pp. 2394-2402
    • Tourassi, G.D.1    Frederickm, K.2    Markey, E.D.3    Floyd, C.E.4
  • 32
    • 17644384367 scopus 로고    scopus 로고
    • Minimum redundancy feature selection from microarray gene expression data
    • C. Ding and H. Peng, "Minimum redundancy feature selection from microarray gene expression data," J. Bioinf. Comput. Biol., vol.3, pp. 185- 205, 2005.
    • (2005) J. Bioinf. Comput. Biol. , vol.3 , pp. 185-205
    • Ding, C.1    Peng, H.2
  • 33
    • 0030336504 scopus 로고    scopus 로고
    • Sample quantiles in statistical packages
    • R. J. Hyndman and Y. N. Fan, "Sample quantiles in statistical packages," Amer. Stat., vol.50, pp. 361-365, 1996.
    • (1996) Amer. Stat. , vol.50 , pp. 361-365
    • Hyndman, R.J.1    Fan, Y.N.2
  • 34
    • 0001006209 scopus 로고
    • Local computations with probabilities on graphical structures and their application to expert systems
    • S. L. Lauritzen and D. J. Spiegelhalter, "Local computations with probabilities on graphical structures and their application to expert systems," J. R. Stat. Soc., vol.50, pp. 157-224, 1988.
    • (1988) J. R. Stat. Soc. , vol.50 , pp. 157-224
    • Lauritzen, S.L.1    Spiegelhalter, D.J.2
  • 35
    • 0003263179 scopus 로고
    • Propagating uncertainty by logic sampling in Bayesian networks
    • Elsevier, NewYork
    • M. Henrion, "Propagating uncertainty by logic sampling in Bayesian networks," in Proc.Uncertainty Artif. Intell. Conf., Elsevier, NewYork, 1988, pp. 149-163.
    • (1988) Proc.Uncertainty Artif. Intell. Conf. , pp. 149-163
    • Henrion, M.1
  • 36
    • 36248999573 scopus 로고    scopus 로고
    • Informationtheoretic inference of large transcriptional regulatory networks
    • P. E. Meyer, K. Kontos, F. Lafitte, and G. Bontempi, " Informationtheoretic inference of large transcriptional regulatory networks," EURASIP J. Bioinf. Syst. Biol., vol.2007, no.1, pp. 9, 2007.
    • (2007) EURASIP J. Bioinf. Syst. Biol. , vol.2007 , Issue.1 , pp. 9
    • Meyer, P.E.1    Kontos, K.2    Lafitte, F.3    Bontempi, G.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.