메뉴 건너뛰기




Volumn 16, Issue 2, 2001, Pages 101-117

Interval estimation for a binomial proportion

Author keywords

Bayes; Binomial distribution; Confidence intervals; Coverage probability; Edgeworth expansion; Expected length; Jeffreys prior; Normal approximation; Posterior

Indexed keywords


EID: 0000460102     PISSN: 08834237     EISSN: None     Source Type: Journal    
DOI: 10.1214/ss/1009213286     Document Type: Article
Times cited : (2749)

References (29)
  • 2
    • 0032377357 scopus 로고    scopus 로고
    • Approximate is better than “exact” for interval estimation of binomial proportions
    • Agresti, A. and CouLL, B. A. (1998). Approximate is better than “exact” for interval estimation of binomial proportions. Amer. Statist. 52 119-126.
    • (1998) Amer. Statist. , vol.52 , pp. 119-126
    • Agresti, A.1    Coull, B.A.2
  • 3
    • 0001243836 scopus 로고
    • The transformation of Poisson, binomial and negative binomial data.
    • Anscombe, F. J. (1948). The transformation of Poisson, binomial and negative binomial data. Biometrika 35 246-254.
    • (1948) Biometrika , vol.35 , pp. 246-254
    • Anscombe, F.J.1
  • 4
    • 0011210301 scopus 로고
    • On estimating binomial response relations
    • Anscombe, F. J. (1956). On estimating binomial response relations. Biometrika 43 461-464.
    • (1956) Biometrika , vol.43 , pp. 461-464
    • Anscombe, F.J.1
  • 9
    • 0041907998 scopus 로고    scopus 로고
    • Confidence intervals for a binomial proportion and asymptotic expansions
    • and, to appear
    • Brown, L. D., Cai, T. and DASGupTA, A. (1999). Confidence intervals for a binomial proportion and asymptotic expansions. Ann. Statist to appear.
    • (1999) Ann. Statist
    • Brown, L.D.1    Cai, T.2    Dasgupta, A.3
  • 11
    • 84988074836 scopus 로고
    • Refining binomial confidence intervals
    • CASELLA, G. (1986). Refining binomial confidence intervals Canad. J. Statist. 14 113-129.
    • (1986) Canad. J. Statist , vol.14 , pp. 113-129
    • Casella, G.1
  • 13
    • 0001072895 scopus 로고
    • The use of confidence or fiducial limits illustrated in the case of the binomial
    • Clopper, C. J. and Pearson, E. S. (1934). The use of confidence or fiducial limits illustrated in the case of the binomial. Biometrika 26 404-413.
    • (1934) Biometrika , vol.26 , pp. 404-413
    • Clopper, C.J.1    Pearson, E.S.2
  • 15
    • 51249186300 scopus 로고
    • A finely tuned continuity correction
    • Cressie, N. (1980). A finely tuned continuity correction. Ann. Inst. Statist. Math. 30 435-442.
    • (1980) Ann. Inst. Statist. Math. , vol.30 , pp. 435-442
    • Cressie, N.1
  • 16
    • 0001473014 scopus 로고
    • A comparison of some approximate confidence intervals for the binomial parameter
    • Ghosh, B. K. (1979). A comparison of some approximate confidence intervals for the binomial parameter J. Amer. Statist. Assoc. 74 894-900.
    • (1979) J. Amer. Statist. Assoc , vol.74 , pp. 894-900
    • Ghosh, B.K.1
  • 17
    • 0041908082 scopus 로고
    • Improving the normal approximation when constructing one-sided confidence intervals for binomial or Poisson parameters
    • Hall, P. (1982). Improving the normal approximation when constructing one-sided confidence intervals for binomial or Poisson parameters. Biometrika 69 647-652.
    • (1982) Biometrika , vol.69 , pp. 647-652
    • Hall, P.1
  • 19
    • 0032580320 scopus 로고    scopus 로고
    • Two-sided confidence intervals for the single proportion; comparison of several methods
    • Newcombe, R. G. (1998). Two-sided confidence intervals for the single proportion; comparison of several methods. Statistics in Medicine 17 857-872.
    • (1998) Statistics in Medicine , vol.17 , pp. 857-872
    • Newcombe, R.G.1
  • 22
    • 85040478193 scopus 로고    scopus 로고
    • A note on teaching binomial confidence intervals
    • Santner, T. J. (1998). A note on teaching binomial confidence intervals. Teaching Statistics 20 20-23.
    • (1998) Teaching Statistics , vol.20 , pp. 20-23
    • Santner, T.J.1
  • 25
    • 0042416886 scopus 로고    scopus 로고
    • Approximately exact inference for the common odds ratio in several 2 × 2 tables (With discussion)
    • Strawderman, R. L. and Wells, M. T. (1998). Approximately exact inference for the common odds ratio in several 2 × 2 tables (with discussion). J. Amer. Statist. Assoc. 93 1294-1320.
    • (1998) J. Amer. Statist. Assoc. , vol.93 , pp. 1294-1320
    • Strawderman, R.L.1    Wells, M.T.2
  • 27
    • 0027233743 scopus 로고
    • Confidence intervals for a binomial proportion
    • Vollset, S. E. (1993). Confidence intervals for a binomial proportion. Statistics in Medicine 12 809-824.
    • (1993) Statistics in Medicine , vol.12 , pp. 809-824
    • Vollset, S.E.1
  • 29
    • 84946650481 scopus 로고
    • Probable inference, the law of succession, and statistical inference
    • Wilson, E. B. (1927). Probable inference, the law of succession, and statistical inference. J. Amer. Statist. Assoc. 22 209-212.
    • (1927) J. Amer. Statist. Assoc. , vol.22 , pp. 209-212
    • Wilson, E.B.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.