-
2
-
-
0032377357
-
Approximate is better than “exact” for interval estimation of binomial proportions
-
Agresti, A. and CouLL, B. A. (1998). Approximate is better than “exact” for interval estimation of binomial proportions. Amer. Statist. 52 119-126.
-
(1998)
Amer. Statist.
, vol.52
, pp. 119-126
-
-
Agresti, A.1
Coull, B.A.2
-
3
-
-
0001243836
-
The transformation of Poisson, binomial and negative binomial data.
-
Anscombe, F. J. (1948). The transformation of Poisson, binomial and negative binomial data. Biometrika 35 246-254.
-
(1948)
Biometrika
, vol.35
, pp. 246-254
-
-
Anscombe, F.J.1
-
4
-
-
0011210301
-
On estimating binomial response relations
-
Anscombe, F. J. (1956). On estimating binomial response relations. Biometrika 43 461-464.
-
(1956)
Biometrika
, vol.43
, pp. 461-464
-
-
Anscombe, F.J.1
-
9
-
-
0041907998
-
Confidence intervals for a binomial proportion and asymptotic expansions
-
and, to appear
-
Brown, L. D., Cai, T. and DASGupTA, A. (1999). Confidence intervals for a binomial proportion and asymptotic expansions. Ann. Statist to appear.
-
(1999)
Ann. Statist
-
-
Brown, L.D.1
Cai, T.2
Dasgupta, A.3
-
11
-
-
84988074836
-
Refining binomial confidence intervals
-
CASELLA, G. (1986). Refining binomial confidence intervals Canad. J. Statist. 14 113-129.
-
(1986)
Canad. J. Statist
, vol.14
, pp. 113-129
-
-
Casella, G.1
-
13
-
-
0001072895
-
The use of confidence or fiducial limits illustrated in the case of the binomial
-
Clopper, C. J. and Pearson, E. S. (1934). The use of confidence or fiducial limits illustrated in the case of the binomial. Biometrika 26 404-413.
-
(1934)
Biometrika
, vol.26
, pp. 404-413
-
-
Clopper, C.J.1
Pearson, E.S.2
-
15
-
-
51249186300
-
A finely tuned continuity correction
-
Cressie, N. (1980). A finely tuned continuity correction. Ann. Inst. Statist. Math. 30 435-442.
-
(1980)
Ann. Inst. Statist. Math.
, vol.30
, pp. 435-442
-
-
Cressie, N.1
-
16
-
-
0001473014
-
A comparison of some approximate confidence intervals for the binomial parameter
-
Ghosh, B. K. (1979). A comparison of some approximate confidence intervals for the binomial parameter J. Amer. Statist. Assoc. 74 894-900.
-
(1979)
J. Amer. Statist. Assoc
, vol.74
, pp. 894-900
-
-
Ghosh, B.K.1
-
17
-
-
0041908082
-
Improving the normal approximation when constructing one-sided confidence intervals for binomial or Poisson parameters
-
Hall, P. (1982). Improving the normal approximation when constructing one-sided confidence intervals for binomial or Poisson parameters. Biometrika 69 647-652.
-
(1982)
Biometrika
, vol.69
, pp. 647-652
-
-
Hall, P.1
-
19
-
-
0032580320
-
Two-sided confidence intervals for the single proportion; comparison of several methods
-
Newcombe, R. G. (1998). Two-sided confidence intervals for the single proportion; comparison of several methods. Statistics in Medicine 17 857-872.
-
(1998)
Statistics in Medicine
, vol.17
, pp. 857-872
-
-
Newcombe, R.G.1
-
22
-
-
85040478193
-
A note on teaching binomial confidence intervals
-
Santner, T. J. (1998). A note on teaching binomial confidence intervals. Teaching Statistics 20 20-23.
-
(1998)
Teaching Statistics
, vol.20
, pp. 20-23
-
-
Santner, T.J.1
-
25
-
-
0042416886
-
Approximately exact inference for the common odds ratio in several 2 × 2 tables (With discussion)
-
Strawderman, R. L. and Wells, M. T. (1998). Approximately exact inference for the common odds ratio in several 2 × 2 tables (with discussion). J. Amer. Statist. Assoc. 93 1294-1320.
-
(1998)
J. Amer. Statist. Assoc.
, vol.93
, pp. 1294-1320
-
-
Strawderman, R.L.1
Wells, M.T.2
-
27
-
-
0027233743
-
Confidence intervals for a binomial proportion
-
Vollset, S. E. (1993). Confidence intervals for a binomial proportion. Statistics in Medicine 12 809-824.
-
(1993)
Statistics in Medicine
, vol.12
, pp. 809-824
-
-
Vollset, S.E.1
-
29
-
-
84946650481
-
Probable inference, the law of succession, and statistical inference
-
Wilson, E. B. (1927). Probable inference, the law of succession, and statistical inference. J. Amer. Statist. Assoc. 22 209-212.
-
(1927)
J. Amer. Statist. Assoc.
, vol.22
, pp. 209-212
-
-
Wilson, E.B.1
|