메뉴 건너뛰기




Volumn 58, Issue 2, 2013, Pages 374-389

A wavelet-neural network hybrid modelling approach for estimating and predicting river monthly flows;Une approche de modélisation hybride par ondelettes et réseau de neurones pour l'estimation et la prévision des débits mensuels

Author keywords

Bayesian regularization; instream flow; Levenberg Marquardt; wavelet neural network

Indexed keywords

ANN MODELS; BAYESIAN REGULARIZATION; DISCRETE WAVELETS; FEED-FORWARD MULTILAYER PERCEPTRON; HYBRID MODEL; HYBRID MODELLING; INSTREAM FLOWS; LEVENBERG-MARQUARDT; LEVENBERG-MARQUARDT ALGORITHM; MONTHLY FLOW; MULTI RESOLUTION DECOMPOSITION; NETWORK MODELLING; NETWORK TRAINING; RIVER FLOW; WEIHE RIVERS;

EID: 84874761795     PISSN: 02626667     EISSN: 21503435     Source Type: Journal    
DOI: 10.1080/02626667.2012.754102     Document Type: Article
Times cited : (72)

References (52)
  • 1
    • 0035558184 scopus 로고    scopus 로고
    • Storage capacity for river reservoirs by wavelet-based generation of sequent-peak algorithm
    • Aksoy, H. 2001. Storage capacity for river reservoirs by wavelet-based generation of sequent-peak algorithm. Water Resources Management, 15(6): 423-437.
    • (2001) Water Resources Management , vol.15 , Issue.6 , pp. 423-437
    • Aksoy, H.1
  • 2
    • 1842853957 scopus 로고    scopus 로고
    • Wavelet analysis for modeling suspended sediment discharge
    • Aksoy, H., Akar, T. and Unal, N.E. 2004a. Wavelet analysis for modeling suspended sediment discharge. Nordic Hydrology, 35(2): 165-174.
    • (2004) Nordic Hydrology , vol.35 , Issue.2 , pp. 165-174
    • Aksoy, H.1    Akar, T.2    Unal, N.E.3
  • 3
    • 3242711607 scopus 로고    scopus 로고
    • Stochastic generation of hourly mean wind speed data
    • Aksoy, H. 2004b. Stochastic generation of hourly mean wind speed data. Renewable Energy, 29: 2111-2131.
    • (2004) Renewable Energy , vol.29 , pp. 2111-2131
    • Aksoy, H.1
  • 4
    • 36348960804 scopus 로고    scopus 로고
    • Discussion of "Comparison of two nonparametric alternatives for stochastic generation of monthly rainfall" by R. Srikanthan, A. Sharma, and T.A. McMahon
    • Aksoy, H. and Unal, N.E. 2007. Discussion of "Comparison of two nonparametric alternatives for stochastic generation of monthly rainfall" by R. Srikanthan, A. Sharma, and T.A. McMahon. Journal of Hydrologic Engineering, 12(6): 699-702.
    • (2007) Journal of Hydrologic Engineering , vol.12 , Issue.6 , pp. 699-702
    • Aksoy, H.1    Unal, N.E.2
  • 5
    • 0002378584 scopus 로고    scopus 로고
    • Wavelet-based feature extraction and decomposition strategies for financial forecasting
    • Aussem, A., Campbell, J. and Murtagh, F. 1998. Wavelet-based feature extraction and decomposition strategies for financial forecasting. Journal of Computational Intelligence in Finance, 6(2): 5-12.
    • (1998) Journal of Computational Intelligence in Finance , vol.6 , Issue.2 , pp. 5-12
    • Aussem, A.1    Campbell, J.2    Murtagh, F.3
  • 6
    • 0035154671 scopus 로고    scopus 로고
    • Using wavelets for data generation
    • Bayazit, M. and Aksoy, H. 2001. Using wavelets for data generation. Journal of Applied Statistics, 28(2): 157-166.
    • (2001) Journal of Applied Statistics , vol.28 , Issue.2 , pp. 157-166
    • Bayazit, M.1    Aksoy, H.2
  • 7
    • 0035417233 scopus 로고    scopus 로고
    • Nonparametric streamflow simulation by wavelet or Fourier analysis
    • Bayazit, M., Önöz, B. and Aksoy, H. 2001. Nonparametric streamflow simulation by wavelet or Fourier analysis. Hydrological Sciences Journal, 46(4): 623-634.
    • (2001) Hydrological Sciences Journal , vol.46 , Issue.4 , pp. 623-634
    • Bayazit, M.1    Önöz, B.2    Aksoy, H.3
  • 9
    • 0038240745 scopus 로고    scopus 로고
    • Artificial neural network approach to flood forecasting in the River Arno
    • Campolo, M., Soldati, A. and Andreussi, P. 2003. Artificial neural network approach to flood forecasting in the River Arno. Hydrological Sciences Journal, 48(3): 381-398.
    • (2003) Hydrological Sciences Journal , vol.48 , Issue.3 , pp. 381-398
    • Campolo, M.1    Soldati, A.2    Andreussi, P.3
  • 10
    • 33751401308 scopus 로고    scopus 로고
    • Data preprocessing for river flow forecasting using neural networks: wavelet transforms and data partitioning
    • Cannas, B. 2006. Data preprocessing for river flow forecasting using neural networks: wavelet transforms and data partitioning. Physics and Chemistry of the Earth, Parts A/B/C, 31(18): 1164-1171.
    • (2006) Physics and Chemistry of the Earth, Parts A/B/C , vol.31 , Issue.18 , pp. 1164-1171
    • Cannas, B.1
  • 11
    • 34548033948 scopus 로고    scopus 로고
    • Wavelet and artificial neural network analyses of tide forecasting and supplement of tides around Taiwan and South China Sea
    • Chen, B.F., Wang, H.D. and Chu, C.C. 2007. Wavelet and artificial neural network analyses of tide forecasting and supplement of tides around Taiwan and South China Sea. Ocean Engineering, 34(16): 2161-2175.
    • (2007) Ocean Engineering , vol.34 , Issue.16 , pp. 2161-2175
    • Chen, B.F.1    Wang, H.D.2    Chu, C.C.3
  • 12
    • 1342310688 scopus 로고    scopus 로고
    • Estimation and forecasting of daily suspended sediment data by multi-layer perceptrons
    • Cigizoglu, H.K. 2004. Estimation and forecasting of daily suspended sediment data by multi-layer perceptrons. Advances in Water Resources, 27(2): 185-195.
    • (2004) Advances in Water Resources , vol.27 , Issue.2 , pp. 185-195
    • Cigizoglu, H.K.1
  • 13
    • 0025482241 scopus 로고
    • The wavelet transform, time-frequency localization and signal analysis
    • Daubechies, I. 1990. The wavelet transform, time-frequency localization and signal analysis. IEEE Transactions on Information Theory, 36(5): 961-1005.
    • (1990) IEEE Transactions on Information Theory , vol.36 , Issue.5 , pp. 961-1005
    • Daubechies, I.1
  • 14
    • 0034749335 scopus 로고    scopus 로고
    • Hydrological modelling using artificial neural networks
    • Dawson, C.W. and Wilby, R.L. 2001. Hydrological modelling using artificial neural networks. Progress in Physical Geography, 25(1): 80-108.
    • (2001) Progress in Physical Geography , vol.25 , Issue.1 , pp. 80-108
    • Dawson, C.W.1    Wilby, R.L.2
  • 15
    • 41049106111 scopus 로고    scopus 로고
    • Integrated clustering modeling with backpropagation neural network for effcient customer relationship management: intelligent data mining
    • In: Ruan D., editors Berlin, Berlin,: Springer, In:eds
    • Ertay, T. and Çekyay, B. 2005. "Integrated clustering modeling with backpropagation neural network for effcient customer relationship management: intelligent data mining". In Studies in computational intelligence, Edited by: Ruan, D. 355-373. Berlin: Springer. In:eds.
    • (2005) Studies in computational intelligence , pp. 355-373
    • Ertay, T.1    Çekyay, B.2
  • 16
    • 41049094220 scopus 로고    scopus 로고
    • On hydrologic calculation using artificial neural networks
    • Feng, L. and Hong, W. 2008. On hydrologic calculation using artificial neural networks. Applied Mathematics Letters, 21(5): 453-458.
    • (2008) Applied Mathematics Letters , vol.21 , Issue.5 , pp. 453-458
    • Feng, L.1    Hong, W.2
  • 17
    • 34848868092 scopus 로고    scopus 로고
    • A comparative study of three neural network forecast combination methods for simulated river flows of different rainfall-runoff models
    • Hamseldin, S.Y., O'Connor, K.M. and Nasr, A.E. 2007. A comparative study of three neural network forecast combination methods for simulated river flows of different rainfall-runoff models. Hydrological Sciences Journal, 52(5): 896-916.
    • (2007) Hydrological Sciences Journal , vol.52 , Issue.5 , pp. 896-916
    • Hamseldin, S.Y.1    O'Connor, K.M.2    Nasr, A.E.3
  • 18
    • 17444385970 scopus 로고    scopus 로고
    • A modified neural network for improving river flow prediction
    • Hu, T.S., Lam, K.C. and Ng, S.T. 2005. A modified neural network for improving river flow prediction. Hydrological Sciences Journal, 50(2): 491-507.
    • (2005) Hydrological Sciences Journal , vol.50 , Issue.2 , pp. 491-507
    • Hu, T.S.1    Lam, K.C.2    Ng, S.T.3
  • 20
    • 33748033402 scopus 로고    scopus 로고
    • Implementation of wavelets and artificial neural networks to detection of toxic response behavior of chironomids (Chironomidae: Diptera) for water quality monitoring
    • Kim, C.K. 2006. Implementation of wavelets and artificial neural networks to detection of toxic response behavior of chironomids (Chironomidae: Diptera) for water quality monitoring. Ecological Modelling, 195(1-2): 61-71.
    • (2006) Ecological Modelling , vol.195 , Issue.1-2 , pp. 61-71
    • Kim, C.K.1
  • 21
    • 0344121593 scopus 로고    scopus 로고
    • Nonlinear model for drought forecasting based on a conjunction of wavelet transforms and neural networks
    • Kim, T.W. and Valdes, J.B. 2003. Nonlinear model for drought forecasting based on a conjunction of wavelet transforms and neural networks. Journal of Hydrologic Enginerring, 8(6): 319-328.
    • (2003) Journal of Hydrologic Enginerring , vol.8 , Issue.6 , pp. 319-328
    • Kim, T.W.1    Valdes, J.B.2
  • 22
    • 67650333111 scopus 로고    scopus 로고
    • Neural network and wavelet conjunction model for modelling monthly level fluctuations in Turkey
    • Kisi, O. 2009. Neural network and wavelet conjunction model for modelling monthly level fluctuations in Turkey. Hydrological Processes, 23(14): 2081-2092.
    • (2009) Hydrological Processes , vol.23 , Issue.14 , pp. 2081-2092
    • Kisi, O.1
  • 23
  • 24
    • 79956302151 scopus 로고    scopus 로고
    • Monthly rainfall-runoff modelling using artificial neural networks
    • Machado, F. 2011. Monthly rainfall-runoff modelling using artificial neural networks. Hydrological Sciences Journal, 56(3): 349-361.
    • (2011) Hydrological Sciences Journal , vol.56 , Issue.3 , pp. 349-361
    • Machado, F.1
  • 25
    • 0002704818 scopus 로고
    • A practical Bayesian framework for backpropagation networks
    • MacKay, D.J.C. 1992. A practical Bayesian framework for backpropagation networks. Neural Computation, 4: 448-472.
    • (1992) Neural Computation , vol.4 , pp. 448-472
    • MacKay, D.J.C.1
  • 26
    • 0029663621 scopus 로고    scopus 로고
    • The use of artificial neural networks for the prediction of water quality parameters
    • Maier, H.R. and Dandy, G.C. 1996. The use of artificial neural networks for the prediction of water quality parameters. Water Resources Research, 32(4): 1013
    • (1996) Water Resources Research , vol.32 , Issue.4 , pp. 1013
    • Maier, H.R.1    Dandy, G.C.2
  • 27
    • 84966210236 scopus 로고
    • Multiresolution approximations and wavelet orthonormal bases of L 2 (R)
    • Mallat, S.G. 1989. Multiresolution approximations and wavelet orthonormal bases of L 2 (R). Transactions of the American Mathematical Society, 315(1): 69
    • (1989) Transactions of the American Mathematical Society , vol.315 , Issue.1 , pp. 69
    • Mallat, S.G.1
  • 28
    • 78650507206 scopus 로고    scopus 로고
    • Neuro-fuzzy models employing wavelet analysis for suspended sediment concentration prediction in rivers
    • Mirbagheri, S.A. 2010. Neuro-fuzzy models employing wavelet analysis for suspended sediment concentration prediction in rivers. Hydrological Sciences Journal, 55(7): 1175-1189.
    • (2010) Hydrological Sciences Journal , vol.55 , Issue.7 , pp. 1175-1189
    • Mirbagheri, S.A.1
  • 30
    • 33645973241 scopus 로고    scopus 로고
    • Monthly runoff simulation: comparing and combining conceptual and neural network models
    • Nilsson, P., Uvo, C.B. and Berndtsson, R. 2006. Monthly runoff simulation: comparing and combining conceptual and neural network models. Journal of Hydrology, 321(1-4): 344-363.
    • (2006) Journal of Hydrology , vol.321 , Issue.1-4 , pp. 344-363
    • Nilsson, P.1    Uvo, C.B.2    Berndtsson, R.3
  • 32
    • 71649098140 scopus 로고    scopus 로고
    • Modelling evapotranspiration using discrete wavelet transform and neural networks
    • Partal, T. 2009. Modelling evapotranspiration using discrete wavelet transform and neural networks. Hydrological Processes, 23(25): 3545-3555.
    • (2009) Hydrological Processes , vol.23 , Issue.25 , pp. 3545-3555
    • Partal, T.1
  • 33
    • 48649085521 scopus 로고    scopus 로고
    • Estimation and forecasting of daily suspended sediment data using wavelet-neural networks
    • Partal, T. and Cigizoglu, H.K. 2008. Estimation and forecasting of daily suspended sediment data using wavelet-neural networks. Journal of Hydrology, 358(3-4): 317-331.
    • (2008) Journal of Hydrology , vol.358 , Issue.3-4 , pp. 317-331
    • Partal, T.1    Cigizoglu, H.K.2
  • 34
    • 34447527322 scopus 로고    scopus 로고
    • Wavelet and neuro-fuzzy conjunction model for precipitation forecasting
    • Partal, T. and Kisi, Ö. 2007. Wavelet and neuro-fuzzy conjunction model for precipitation forecasting. Journal of Hydrology, 342(1-2): 199-212.
    • (2007) Journal of Hydrology , vol.342 , Issue.1-2 , pp. 199-212
    • Partal, T.1    Kisi, Ö.2
  • 36
    • 0001857840 scopus 로고    scopus 로고
    • Streamflow forecasting based on artificial neural networks
    • In: Govindaraju R.S., Ramachandra Rao A., editors Kluwer Academic, In:eds
    • Salas, J.D., Markus, M. and Tokar, A.S. 2000. "Streamflow forecasting based on artificial neural networks". In Artificial neural networks in hydrology, Edited by: Govindaraju, R.S. and Ramachandra Rao, A. 23-51. Kluwer Academic. In:eds.
    • (2000) Artificial neural networks in hydrology , pp. 23-51
    • Salas, J.D.1    Markus, M.2    Tokar, A.S.3
  • 37
    • 69949114540 scopus 로고    scopus 로고
    • A coupled approach of surface hydrological modelling and wavelet analysis for understanding the baseflow components of river discharge in karst environments
    • Salerno, F. and Tartari, G. 2009. A coupled approach of surface hydrological modelling and wavelet analysis for understanding the baseflow components of river discharge in karst environments. Journal of Hydrology, 376(1-2): 295-306.
    • (2009) Journal of Hydrology , vol.376 , Issue.1-2 , pp. 295-306
    • Salerno, F.1    Tartari, G.2
  • 38
    • 0037199712 scopus 로고    scopus 로고
    • River flow forecasting: use of phase-space reconstruction and artificial neural networks approaches
    • Sivakumar, B., Jayawardena, A.W. and Fernando, T.M.K.G. 2002. River flow forecasting: use of phase-space reconstruction and artificial neural networks approaches. Journal of Hydrology, 265(1-4): 225-245.
    • (2002) Journal of Hydrology , vol.265 , Issue.1-4 , pp. 225-245
    • Sivakumar, B.1    Jayawardena, A.W.2    Fernando, T.M.K.G.3
  • 39
    • 34247275833 scopus 로고    scopus 로고
    • Ecological and environmental instream flow requirements for the Wei River-the largest tributary of the Yellow River
    • Song, J.X. 2007. Ecological and environmental instream flow requirements for the Wei River-the largest tributary of the Yellow River. Hydrological Processes, 21(8): 1066-1073.
    • (2007) Hydrological Processes , vol.21 , Issue.8 , pp. 1066-1073
    • Song, J.X.1
  • 40
    • 57949116748 scopus 로고    scopus 로고
    • River flow prediction using an integrated approach
    • Srinivasulu, S. and Jain, A. 2009. River flow prediction using an integrated approach. Journal of Hydrologic Engineering, 14(1): 75
    • (2009) Journal of Hydrologic Engineering , vol.14 , Issue.1 , pp. 75
    • Srinivasulu, S.1    Jain, A.2
  • 42
    • 0037036332 scopus 로고    scopus 로고
    • Neural network for wave forecasting among multi-stations
    • Tsai, C.P., Lin, C. and Shen, J.N. 2002. Neural network for wave forecasting among multi-stations. Ocean Engineering, 29(13): 1683-1695.
    • (2002) Ocean Engineering , vol.29 , Issue.13 , pp. 1683-1695
    • Tsai, C.P.1    Lin, C.2    Shen, J.N.3
  • 44
    • 33745621923 scopus 로고    scopus 로고
    • River flow forecasting with constructive neural network
    • In: Hutchison D., editors Berlin, Berlin,: Springer, In:eds
    • Valença, M., Ludermir, T. and Valença, A. 2005. "River flow forecasting with constructive neural network". In Lecture notes in computer science, Edited by: Hutchison, D. 1031-1036. Berlin: Springer. In:eds.
    • (2005) Lecture notes in computer science , pp. 1031-1036
    • Valença, M.1    Ludermir, T.2    Valença, A.3
  • 45
    • 33845543385 scopus 로고    scopus 로고
    • Wavelet network model and its application to the prediction of hydrology
    • Wang, W. and Ding, J. 2003. Wavelet network model and its application to the prediction of hydrology. Nature and Science, 1(1): 67-71.
    • (2003) Nature and Science , vol.1 , Issue.1 , pp. 67-71
    • Wang, W.1    Ding, J.2
  • 46
    • 33646547633 scopus 로고    scopus 로고
    • Forecasting daily streamflow using hybrid ANN models
    • Wang, W. 2006a. Forecasting daily streamflow using hybrid ANN models. Journal of Hydrology, 324(1-4): 383-399.
    • (2006) Journal of Hydrology , vol.324 , Issue.1-4 , pp. 383-399
    • Wang, W.1
  • 47
    • 34247216614 scopus 로고    scopus 로고
    • Research on the conversion relationships between the river and groundwater in the Yellow River drainage area
    • in Chinese
    • Wang, W. 2004. Research on the conversion relationships between the river and groundwater in the Yellow River drainage area. Science in China Series E: Technological Sciences, 47: 25-41. in Chinese
    • (2004) Science in China Series E: Technological Sciences , vol.47 , pp. 25-41
    • Wang, W.1
  • 48
    • 84869495837 scopus 로고    scopus 로고
    • Change of natural runoff and contribution of the natural and artificial factors to upper reaches of Wei River
    • in Chinese
    • Wang, X.Q., Zhang, Y. and Zhang, Y.H. 2006b. Change of natural runoff and contribution of the natural and artificial factors to upper reaches of Wei River. Journal of Natural Resources, 21(6): 981-990. in Chinese
    • (2006) Journal of Natural Resources , vol.21 , Issue.6 , pp. 981-990
    • Wang, X.Q.1    Zhang, Y.2    Zhang, Y.H.3
  • 49
    • 65749118118 scopus 로고    scopus 로고
    • Methods to improve neural network performance in daily flows prediction
    • Wu, C.L., Chau, K.W. and Li, Y.S. 2009. Methods to improve neural network performance in daily flows prediction. Journal of Hydrology, 372: 80-93.
    • (2009) Journal of Hydrology , vol.372 , pp. 80-93
    • Wu, C.L.1    Chau, K.W.2    Li, Y.S.3
  • 50
    • 0033019602 scopus 로고    scopus 로고
    • Short term streamflow forecasting using artificial neural networks
    • Zealand, C.M., Burn, D.H. and Simonovic, S.P. 1999. Short term streamflow forecasting using artificial neural networks. Journal of Hydrology, 214(1-4): 32-48.
    • (1999) Journal of Hydrology , vol.214 , Issue.1-4 , pp. 32-48
    • Zealand, C.M.1    Burn, D.H.2    Simonovic, S.P.3
  • 51
    • 0035964832 scopus 로고    scopus 로고
    • An adaptive neural-wavelet model for short-term load forecasting
    • Zhang, B.L. and Dong, Z.Y. 2001. An adaptive neural-wavelet model for short-term load forecasting. Electric Power Systems Research, 59(2): 121-129.
    • (2001) Electric Power Systems Research , vol.59 , Issue.2 , pp. 121-129
    • Zhang, B.L.1    Dong, Z.Y.2
  • 52
    • 34247257798 scopus 로고    scopus 로고
    • Evaluation of water quality and countermeasures ofpollution prevention for Weihe River
    • in Chinese
    • Zhao, H. 2003. Evaluation of water quality and countermeasures ofpollution prevention for Weihe River. Northwest Water Resources and Water Engineering, 14(1): 28-31. in Chinese
    • (2003) Northwest Water Resources and Water Engineering , vol.14 , Issue.1 , pp. 28-31
    • Zhao, H.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.