메뉴 건너뛰기




Volumn 91, Issue 3, 2013, Pages 530-541

A fault magnitude based strategy for effective fault classification

Author keywords

DAMADICS; Principal component analysis; Support vector machine; System decomposition

Indexed keywords

BENCH-MARK PROBLEMS; CONVENTIONAL APPROACH; DAMADICS; EMPIRICAL MODEL; FAULT CLASSIFICATION; FAULT MAGNITUDES; MULTIPLE FAULTS; NORMAL OPERATIONS; PREDICTIVE VARIABLES; PRINCIPAL COMPONENTS; PROCESS VARIABLES; ROOT CAUSE; SUPPORT VECTOR REGRESSION (SVR); SYSTEM DECOMPOSITION;

EID: 84874279814     PISSN: 02638762     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.cherd.2012.09.014     Document Type: Article
Times cited : (5)

References (38)
  • 1
    • 0016355478 scopus 로고
    • A new look at the statistical model identification
    • Akaike H. A new look at the statistical model identification. IEEE Trans. Automat. Control 1974, 19:716-723.
    • (1974) IEEE Trans. Automat. Control , vol.19 , pp. 716-723
    • Akaike, H.1
  • 3
    • 0029540392 scopus 로고
    • On-line fault diagnosis of dynamic systems via robust parameter estimation
    • Bloch G., Ouladsine M., Thomas P. On-line fault diagnosis of dynamic systems via robust parameter estimation. Control Eng. Pract. 1995, 3:1709-1717.
    • (1995) Control Eng. Pract. , vol.3 , pp. 1709-1717
    • Bloch, G.1    Ouladsine, M.2    Thomas, P.3
  • 4
    • 0037470096 scopus 로고    scopus 로고
    • Process monitoring using casual map and multivariate statistics: fault detection and identification
    • Chiang L.H., Braatz R.D. Process monitoring using casual map and multivariate statistics: fault detection and identification. Chemometr. Intell. Lab. Syst. 2003, 65:159-178.
    • (2003) Chemometr. Intell. Lab. Syst. , vol.65 , pp. 159-178
    • Chiang, L.H.1    Braatz, R.D.2
  • 6
    • 2342521341 scopus 로고    scopus 로고
    • Process monitoring using a Gaussian mixture model via principal component analysis and discriminant analysis
    • Choi S.W., Park J.H., Lee I.B. Process monitoring using a Gaussian mixture model via principal component analysis and discriminant analysis. Comput. Chem. Eng. 2004, 28:1377-1387.
    • (2004) Comput. Chem. Eng. , vol.28 , pp. 1377-1387
    • Choi, S.W.1    Park, J.H.2    Lee, I.B.3
  • 7
    • 58749106640 scopus 로고    scopus 로고
    • Intelligent state estimation for fault tolerant nonlinear predictive control
    • Deshpande A.P., Patwardhan S.C., Narasimhan S.S. Intelligent state estimation for fault tolerant nonlinear predictive control. J. Process Control 2009, 19:187-204.
    • (2009) J. Process Control , vol.19 , pp. 187-204
    • Deshpande, A.P.1    Patwardhan, S.C.2    Narasimhan, S.S.3
  • 8
    • 33750303476 scopus 로고    scopus 로고
    • A possibilistic clustering approach to novel fault detection and isolation
    • Detroja K.P., Gudi R.D., Patwardhan S.C. A possibilistic clustering approach to novel fault detection and isolation. J. Process Control 2006, 16:1055-1073.
    • (2006) J. Process Control , vol.16 , pp. 1055-1073
    • Detroja, K.P.1    Gudi, R.D.2    Patwardhan, S.C.3
  • 10
    • 0018651048 scopus 로고
    • An algorithm for diagnosis of system failures in the chemical process
    • Iri M., Aoki K., O'Shima E. An algorithm for diagnosis of system failures in the chemical process. Comput. Chem. Eng. 1979, 3:489-493.
    • (1979) Comput. Chem. Eng. , vol.3 , pp. 489-493
    • Iri, M.1    Aoki, K.2    O'Shima, E.3
  • 11
    • 0037394190 scopus 로고    scopus 로고
    • Monitoring independent components for fault detection
    • Kano M., Tanaka S., Hasebe S., Hashimoto I., Ohno H. Monitoring independent components for fault detection. AIChE J. 2003, 49:969-976.
    • (2003) AIChE J. , vol.49 , pp. 969-976
    • Kano, M.1    Tanaka, S.2    Hasebe, S.3    Hashimoto, I.4    Ohno, H.5
  • 13
    • 0023383125 scopus 로고
    • Rule-based approach to fault diagnosis using the signed directed graph
    • Kramer M., Palowitch B. Rule-based approach to fault diagnosis using the signed directed graph. AIChE J. 1987, 33:1067-1078.
    • (1987) AIChE J. , vol.33 , pp. 1067-1078
    • Kramer, M.1    Palowitch, B.2
  • 14
    • 9744237208 scopus 로고    scopus 로고
    • Multiple-fault diagnosis of the Tennessee Eastman process based on system decomposition and dynamics PLS
    • Lee G., Han C., Yoon E.S. Multiple-fault diagnosis of the Tennessee Eastman process based on system decomposition and dynamics PLS. Ind. Eng. Chem. Res. 2004, 43:8037-8048.
    • (2004) Ind. Eng. Chem. Res. , vol.43 , pp. 8037-8048
    • Lee, G.1    Han, C.2    Yoon, E.S.3
  • 15
    • 0344063365 scopus 로고    scopus 로고
    • Multiple-fault diagnosis based on system decomposition and dynamic PLS
    • Lee G., Song S.-O., Yoon E.S. Multiple-fault diagnosis based on system decomposition and dynamic PLS. Ind. Eng. Chem. Res. 2003, 42:6145-6154.
    • (2003) Ind. Eng. Chem. Res. , vol.42 , pp. 6145-6154
    • Lee, G.1    Song, S.-O.2    Yoon, E.S.3
  • 16
    • 18444379381 scopus 로고    scopus 로고
    • Approximate dynamic programming based approaches for input-output data-driven control of nonlinear processes
    • Lee J.M., Lee J.H. Approximate dynamic programming based approaches for input-output data-driven control of nonlinear processes. Automatica 2005, 41:1281-1288.
    • (2005) Automatica , vol.41 , pp. 1281-1288
    • Lee, J.M.1    Lee, J.H.2
  • 18
    • 3142733714 scopus 로고    scopus 로고
    • Application of signed digraphs-based analysis for fault diagnosis of chemical process flowsheet
    • Maurya M.R., Rengaswamy R., Venkatasubramanian V. Application of signed digraphs-based analysis for fault diagnosis of chemical process flowsheet. Eng. Appl. Artif. Intell. 2004, 17:501-518.
    • (2004) Eng. Appl. Artif. Intell. , vol.17 , pp. 501-518
    • Maurya, M.R.1    Rengaswamy, R.2    Venkatasubramanian, V.3
  • 20
    • 0442312364 scopus 로고    scopus 로고
    • Hybrid process modelling and optimization strategies integrating neural networks/support vector regression and genetic algorithms: study of benzene isopropylation on hbeta catalyst
    • Nandi S., Badhe Y., Lonari J., Sridev U., Rao B.S., Tambe S.S., Kulkarni B.D. Hybrid process modelling and optimization strategies integrating neural networks/support vector regression and genetic algorithms: study of benzene isopropylation on hbeta catalyst. Chem. Eng. J. 2004, 97:115-129.
    • (2004) Chem. Eng. J. , vol.97 , pp. 115-129
    • Nandi, S.1    Badhe, Y.2    Lonari, J.3    Sridev, U.4    Rao, B.S.5    Tambe, S.S.6    Kulkarni, B.D.7
  • 22
    • 20444363828 scopus 로고    scopus 로고
    • Integrating model based fault diagnosis with model predictive control
    • Prakash J., Narasimhan S., Patwardhan S.C. Integrating model based fault diagnosis with model predictive control. Ind. Eng. Chem. Res. 2005, 44:4344-4360.
    • (2005) Ind. Eng. Chem. Res. , vol.44 , pp. 4344-4360
    • Prakash, J.1    Narasimhan, S.2    Patwardhan, S.C.3
  • 23
    • 0036568901 scopus 로고    scopus 로고
    • A supervisory approach to fault tolerant control of linear multivariable systems
    • Prakash J., Patwardhan S.C., Narasimhan S. A supervisory approach to fault tolerant control of linear multivariable systems. Ind. Eng. Chem. Res. 2002, 41:2270-2281.
    • (2002) Ind. Eng. Chem. Res. , vol.41 , pp. 2270-2281
    • Prakash, J.1    Patwardhan, S.C.2    Narasimhan, S.3
  • 24
    • 0031648483 scopus 로고    scopus 로고
    • Determining the model order of nonlinear input/output systems
    • Rhodes C., Morari M. Determining the model order of nonlinear input/output systems. AIChE J. 1998, 44:151-163.
    • (1998) AIChE J. , vol.44 , pp. 151-163
    • Rhodes, C.1    Morari, M.2
  • 25
    • 36549000173 scopus 로고    scopus 로고
    • A fault detection and isolation scheme for industrial systems based on multiple operating models
    • Rodrigues M., Theilliol D., Adam-Medina M., Sauter D. A fault detection and isolation scheme for industrial systems based on multiple operating models. Control Eng. Pract. 2008, 16:225-239.
    • (2008) Control Eng. Pract. , vol.16 , pp. 225-239
    • Rodrigues, M.1    Theilliol, D.2    Adam-Medina, M.3    Sauter, D.4
  • 27
    • 0347243182 scopus 로고    scopus 로고
    • Nonlinear component analysis as a kernel eigenvalue problem
    • Schölkopf B., Smola A., Müller K.-R. Nonlinear component analysis as a kernel eigenvalue problem. Neural Comput. 1998, 5:1299-1319.
    • (1998) Neural Comput. , vol.5 , pp. 1299-1319
    • Schölkopf, B.1    Smola, A.2    Müller, K.-R.3
  • 28
    • 0019244624 scopus 로고
    • A graphical approach to cause and effect analysis of chemical processing systems
    • Umeda T., Kuriyama T., O'Shima E., Matsuyama H. A graphical approach to cause and effect analysis of chemical processing systems. Chem. Eng. Sci. 1980, 35:2379-2388.
    • (1980) Chem. Eng. Sci. , vol.35 , pp. 2379-2388
    • Umeda, T.1    Kuriyama, T.2    O'Shima, E.3    Matsuyama, H.4
  • 30
    • 0037443770 scopus 로고    scopus 로고
    • A review of process fault detection and diagnosis. Part I: Quantitative model-based methods
    • Venkatasubramanian V., Rengaswamy R., Yin K., Kavuri S.N. A review of process fault detection and diagnosis. Part I: Quantitative model-based methods. Comput. Chem. Eng. 2003, 27:293-311.
    • (2003) Comput. Chem. Eng. , vol.27 , pp. 293-311
    • Venkatasubramanian, V.1    Rengaswamy, R.2    Yin, K.3    Kavuri, S.N.4
  • 31
    • 0037443771 scopus 로고    scopus 로고
    • A review of process fault detection and diagnosis. Part II: Qualitative models and search strategies
    • Venkatasubramanian V., Rengaswamy R., Yin K., Kavuri S.N. A review of process fault detection and diagnosis. Part II: Qualitative models and search strategies. Comput. Chem. Eng. 2003, 27:313-326.
    • (2003) Comput. Chem. Eng. , vol.27 , pp. 313-326
    • Venkatasubramanian, V.1    Rengaswamy, R.2    Yin, K.3    Kavuri, S.N.4
  • 32
    • 0037443803 scopus 로고    scopus 로고
    • A review of process fault detection and diagnosis. Part III: Process history based methods
    • Venkatasubramanian V., Rengaswamy R., Yin K., Kavuri S.N. A review of process fault detection and diagnosis. Part III: Process history based methods. Comput. Chem. Eng. 2003, 27:327-346.
    • (2003) Comput. Chem. Eng. , vol.27 , pp. 327-346
    • Venkatasubramanian, V.1    Rengaswamy, R.2    Yin, K.3    Kavuri, S.N.4
  • 33
    • 0033671795 scopus 로고    scopus 로고
    • Standardized Q-static for improved sensitivity in the monitoring of residuals in MSPC
    • Westerhius J.A., Gurden S.P., Smilde A.K. Standardized Q-static for improved sensitivity in the monitoring of residuals in MSPC. J. Chemometr. 2000, 14:335-349.
    • (2000) J. Chemometr. , vol.14 , pp. 335-349
    • Westerhius, J.A.1    Gurden, S.P.2    Smilde, A.K.3
  • 34
    • 0028378733 scopus 로고
    • The possible cause-effect graphs (PSEG) model for fault diagnosis - I. Methodology
    • Wilcox N., Himmelblau D.M. The possible cause-effect graphs (PSEG) model for fault diagnosis - I. Methodology. Comput. Chem. Eng. 1994, 18:103-116.
    • (1994) Comput. Chem. Eng. , vol.18 , pp. 103-116
    • Wilcox, N.1    Himmelblau, D.M.2
  • 35
    • 0035427852 scopus 로고    scopus 로고
    • Classification of abnormal plant operation using multiple process variable trends
    • Wong J.C., McDonald K.A., Palazoglu A. Classification of abnormal plant operation using multiple process variable trends. J. Process Control 2001, 11:409-418.
    • (2001) J. Process Control , vol.11 , pp. 409-418
    • Wong, J.C.1    McDonald, K.A.2    Palazoglu, A.3
  • 36
    • 77951299089 scopus 로고    scopus 로고
    • Multivariate statistical process monitoring using an improved independent component analysis
    • Wang L., Shi H. Multivariate statistical process monitoring using an improved independent component analysis. Chem. Eng. Res. Des. 2010, 88:403-414.
    • (2010) Chem. Eng. Res. Des. , vol.88 , pp. 403-414
    • Wang, L.1    Shi, H.2
  • 37
    • 70349329819 scopus 로고    scopus 로고
    • Multiway Gaussian mixture model based multiphase batch process monitoring
    • Yu J., Qin S.J. Multiway Gaussian mixture model based multiphase batch process monitoring. Ind. Eng. Chem. Res. 2008, 48:8585-8594.
    • (2008) Ind. Eng. Chem. Res. , vol.48 , pp. 8585-8594
    • Yu, J.1    Qin, S.J.2
  • 38
    • 78649480523 scopus 로고    scopus 로고
    • Effective fault detection and isolation using bond graph-based domain decomposition
    • Zhang X., Hoo K.A. Effective fault detection and isolation using bond graph-based domain decomposition. Comput. Chem. Eng. 2011, 35:132-148.
    • (2011) Comput. Chem. Eng. , vol.35 , pp. 132-148
    • Zhang, X.1    Hoo, K.A.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.