메뉴 건너뛰기




Volumn 97, Issue 2-3, 2004, Pages 115-129

Hybrid process modeling and optimization strategies integrating neural networks/support vector regression and genetic algorithms: Study of benzene isopropylation on Hbeta catalyst

Author keywords

Artificial neural networks; Benzene isopropylation; Cumene synthesis; Genetic algorithms; Hbeta catalyst; Process modeling; Process optimization; Support vector regression

Indexed keywords

ARTIFICIAL INTELLIGENCE; BENZENE; CATALYSTS; CORRELATION METHODS; GENETIC ALGORITHMS; OPTIMIZATION; RATE CONSTANTS;

EID: 0442312364     PISSN: 13858947     EISSN: None     Source Type: Journal    
DOI: 10.1016/S1385-8947(03)00150-5     Document Type: Article
Times cited : (104)

References (44)
  • 1
    • 0036568931 scopus 로고    scopus 로고
    • Reaction modeling and optimization using neural networks and genetic algorithms: Case study involving TS-1 catalyzed hydroxylation of benzene
    • Nandi, S., Mukherjee, P., Tambe, S. S., Kumar, R., & Kulkarni, B. D. (2002). Reaction modeling and optimization using neural networks and genetic algorithms: case study involving TS-1 catalyzed hydroxylation of benzene. Ind. Eng. Chem. Res., 41 2159-2169.
    • (2002) Ind. Eng. Chem. Res. , vol.41 , pp. 2159-2169
    • Nandi, S.1    Mukherjee, P.2    Tambe, S.S.3    Kumar, R.4    Kulkarni, B.D.5
  • 4
    • 0000413222 scopus 로고
    • Applications of artificial neural networks in process engineering
    • Bulsari, A. B. (1994). Applications of artificial neural networks in process engineering. J. Syst. Eng., 4 131-170.
    • (1994) J. Syst. Eng. , vol.4 , pp. 131-170
    • Bulsari, A.B.1
  • 5
    • 0037207802 scopus 로고    scopus 로고
    • Catalyst design for methane oxidative coupling by using artificial neural network and hybrid genetic algorithm
    • Huang, K., Zhan, X. -L, Chen, F. -Q, & Lü, D. -W (2003). Catalyst design for methane oxidative coupling by using artificial neural network and hybrid genetic algorithm. Chem. Eng. Sci., 58 81-87.
    • (2003) Chem. Eng. Sci. , vol.58 , pp. 81-87
    • Huang, K.1    Zhan, X.-L.2    Chen, F.-Q.3    Lü, D.-W.4
  • 6
    • 0030174471 scopus 로고    scopus 로고
    • Intelligent systems in process engineering: A review
    • Stephanopoulos, G., & Han, C. (1996). Intelligent systems in process engineering: a review. Comp. Chem. Eng., 20 743-791.
    • (1996) Comp. Chem. Eng. , vol.20 , pp. 743-791
    • Stephanopoulos, G.1    Han, C.2
  • 7
    • 0022471098 scopus 로고
    • Learning representations by backpropagating errors
    • Rumelhart, D., Hinton, G., & Williams, R. (1986). Learning representations by backpropagating errors. Nature, 323 533.
    • (1986) Nature , vol.323 , pp. 533
    • Rumelhart, D.1    Hinton, G.2    Williams, R.3
  • 11
    • 84887252594 scopus 로고    scopus 로고
    • Support vector method for function approximation, regression estimation and signal processing
    • Vapnik, V., Golowich, S., & Smola, A. (1996). Support vector method for function approximation, regression estimation and signal processing. Adv. Neural Inform. Process. Syst., 9 281-287.
    • (1996) Adv. Neural Inform. Process. Syst. , vol.9 , pp. 281-287
    • Vapnik, V.1    Golowich, S.2    Smola, A.3
  • 13
    • 0037279908 scopus 로고    scopus 로고
    • Support vector machines: A useful tool for process engineering applications
    • M. Agarwal, A.M. Jade, V.K. Jayaraman, B.D. Kulkarni, Support vector machines: a useful tool for process engineering applications, Chem. Eng. Prog. 99 (1) (2003) 57-62.
    • (2003) Chem. Eng. Prog. , vol.99 , Issue.1 , pp. 57-62
    • Agarwal, M.1    Jade, A.M.2    Jayaraman, V.K.3    Kulkarni, B.D.4
  • 14
    • 0345978376 scopus 로고    scopus 로고
    • Fault detection using support vector machines and artificial neural networks augmented by genetic algorithms
    • Jack, L. B., & Nandi, A. K. (2002). Fault detection using support vector machines and artificial neural networks augmented by genetic algorithms. Mech. Syst. Signal Process., 16 372-390.
    • (2002) Mech. Syst. Signal Process , vol.16 , pp. 372-390
    • Jack, L.B.1    Nandi, A.K.2
  • 20
    • 0035866512 scopus 로고    scopus 로고
    • High throughput synthesis and screening of catalytic materials case study of the search for a low temperature catalyst for oxidation of low concentration propane
    • Rodemerck, U., Wolf, D., Buyevskaya, U. V., Claus, P., Senkan, S., & Baerns, M. (2001). High throughput synthesis and screening of catalytic materials case study of the search for a low temperature catalyst for oxidation of low concentration propane. Chem. Eng. J., 82 3-11.
    • (2001) Chem. Eng. J. , vol.82 , pp. 3-11
    • Rodemerck, U.1    Wolf, D.2    Buyevskaya, U.V.3    Claus, P.4    Senkan, S.5    Baerns, M.6
  • 22
    • 0036869074 scopus 로고    scopus 로고
    • Open loop control of particle size distribution in semi-batch emulsion copolymerization using genetic algorithms
    • Immanuel, C. D., & Doyle, F. J. (2002). Open loop control of particle size distribution in semi-batch emulsion copolymerization using genetic algorithms. Chem. Eng. Sci., 57 4415-4427.
    • (2002) Chem. Eng. Sci. , vol.57 , pp. 4415-4427
    • Immanuel, C.D.1    Doyle III, F.J.2
  • 23
    • 67049087694 scopus 로고    scopus 로고
    • Parameter estimation with genetic algorithms in control of fed-batch reactor
    • Nougués, J. M., Gran, M. D., & Puigjaner, L. (2002). Parameter estimation with genetic algorithms in control of fed-batch reactor. Chem. Eng. Process., 41 303-309.
    • (2002) Chem. Eng. Process , vol.41 , pp. 303-309
    • Nougués, J.M.1    Gran, M.D.2    Puigjaner, L.3
  • 24
    • 0037437342 scopus 로고    scopus 로고
    • Multiobjective optimization of an industrial styrene reactor
    • Yee, K., Ray, A. K., & Rangaiah, G. P. (2003). Multiobjective optimization of an industrial styrene reactor. Comp. Chem. Eng., 27 111-130.
    • (2003) Comp. Chem. Eng. , vol.27 , pp. 111-130
    • Yee, K.1    Ray, A.K.2    Rangaiah, G.P.3
  • 25
    • 0027284874 scopus 로고
    • Understanding and using genetic algorithms. Part I. Concepts, properties and context
    • Lacasius, C. B., & Kateman, G. (1993). Understanding and using genetic algorithms. Part I. Concepts, properties and context. Chem. Intell. Lab. Syst., 19 1-33.
    • (1993) Chem. Intell. Lab. Syst. , vol.19 , pp. 1-33
    • Lacasius, C.B.1    Kateman, G.2
  • 26
    • 0027945489 scopus 로고
    • Understanding and using genetic algorithms. Part II. Representation, configuration and hybridization
    • Lucasius, C. B., & Kateman, G. (1994). Understanding and using genetic algorithms. Part II. Representation, configuration and hybridization. Chem. Intell. Lab. Syst., 25 99-145.
    • (1994) Chem. Intell. Lab. Syst. , vol.25 , pp. 99-145
    • Lucasius, C.B.1    Kateman, G.2
  • 29
    • 0001044176 scopus 로고
    • Neural networks and their applications
    • Bishop, C. M. (1994). Neural networks and their applications. Rev. Sci. Instrum., 65 1803.
    • (1994) Rev. Sci. Instrum. , vol.65 , pp. 1803
    • Bishop, C.M.1
  • 30
    • 0035137139 scopus 로고    scopus 로고
    • Artificial neural-network-assisted stochastic process optimization strategies
    • Nandi, S., Ghosh, S., Tambe, S. S., & Kulkarni, B. D. (2001). Artificial neural-network-assisted stochastic process optimization strategies. AIChE J., 47 126-141.
    • (2001) AIChE J. , vol.47 , pp. 126-141
    • Nandi, S.1    Ghosh, S.2    Tambe, S.S.3    Kulkarni, B.D.4
  • 31
    • 27144489164 scopus 로고    scopus 로고
    • A tutorial on support vector machines for pattern recognition
    • Burges, C. (1998). A tutorial on support vector machines for pattern recognition. Data Mining Knowl. Disc., 2(2), 1-47.
    • (1998) Data Mining Knowl. Disc. , vol.2 , Issue.2 , pp. 1-47
    • Burges, C.1
  • 32
    • 0032098361 scopus 로고    scopus 로고
    • The connection between regularization operators and support vector kernels
    • Smola, A., Schölkopf, B., & Müller, K. R. (1998). The connection between regularization operators and support vector kernels. Neural Netw., 11 637-649.
    • (1998) Neural Netw. , vol.11 , pp. 637-649
    • Smola, A.1    Schölkopf, B.2    Müller, K.R.3
  • 39
    • 0030917939 scopus 로고    scopus 로고
    • Solid acid catalysts from clays: Cumene synthesis by benzene alkylation with propene catalyzed by cation exchanged aluminium pillared clays
    • Geatti, A., Lenarda, M., Storaro, L., Ganzerla, R., & Perissinotto, M. (1997). Solid acid catalysts from clays: cumene synthesis by benzene alkylation with propene catalyzed by cation exchanged aluminium pillared clays. J. Mol. Catal. A, 121 111-118.
    • (1997) J. Mol. Catal. A , vol.121 , pp. 111-118
    • Geatti, A.1    Lenarda, M.2    Storaro, L.3    Ganzerla, R.4    Perissinotto, M.5
  • 40
    • 0002488390 scopus 로고    scopus 로고
    • Advances in cumene production
    • June 5-12
    • G.R. Meima, Advances in cumene production, CATTECH, June 5-12, 1998.
    • (1998) CATTECH
    • Meima, G.R.1
  • 43
    • 0002714543 scopus 로고    scopus 로고
    • Making large-scale SVM learning practical
    • B. Schölkopf, C.J.C. Burges, A.J. Smola (Eds.), MIT Press, Cambridge, MA
    • T. Joachims, Making large-scale SVM learning practical, in: B. Schölkopf, C.J.C. Burges, A.J. Smola (Eds.), Advances in Kernel Methods-Support Vector Learning, MIT Press, Cambridge, MA, 1998.
    • (1998) Advances in Kernel Methods-Support Vector Learning
    • Joachims, T.1
  • 44
    • 0003120218 scopus 로고    scopus 로고
    • Fast training of support vector machines using sequential minimal optimization
    • B. Schölkopf, C.J.C. Burges, A.J. Smola (Eds.), MIT Press, Cambridge, MA
    • J.C. Platt, Fast training of support vector machines using sequential minimal optimization, in: B. Schölkopf, C.J.C. Burges, A.J. Smola (Eds.), Advances in Kernel Methods-Support Vector Learning, MIT Press, Cambridge, MA, 1998.
    • (1998) Advances in Kernel Methods - Support Vector Learning
    • Platt, J.C.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.