-
1
-
-
0036568931
-
Reaction modeling and optimization using neural networks and genetic algorithms: Case study involving TS-1 catalyzed hydroxylation of benzene
-
Nandi, S., Mukherjee, P., Tambe, S. S., Kumar, R., & Kulkarni, B. D. (2002). Reaction modeling and optimization using neural networks and genetic algorithms: case study involving TS-1 catalyzed hydroxylation of benzene. Ind. Eng. Chem. Res., 41 2159-2169.
-
(2002)
Ind. Eng. Chem. Res.
, vol.41
, pp. 2159-2169
-
-
Nandi, S.1
Mukherjee, P.2
Tambe, S.S.3
Kumar, R.4
Kulkarni, B.D.5
-
2
-
-
0003496530
-
-
Louisville, KY
-
S.S. Tambe, B.D. Kulkarni, P.B. Deshpande, Elements of Artificial Neural Networks with Selected Applications in Chemical Engineering, and Chemical and Biological Sciences, Simulations and Advanced Controls, Louisville, KY, 1996.
-
(1996)
Elements of Artificial Neural Networks With Selected Applications in Chemical Engineering, and Chemical and Biological Sciences, Simulations and Advanced Controls
-
-
Tambe, S.S.1
Kulkarni, B.D.2
Deshpande, P.B.3
-
4
-
-
0000413222
-
Applications of artificial neural networks in process engineering
-
Bulsari, A. B. (1994). Applications of artificial neural networks in process engineering. J. Syst. Eng., 4 131-170.
-
(1994)
J. Syst. Eng.
, vol.4
, pp. 131-170
-
-
Bulsari, A.B.1
-
5
-
-
0037207802
-
Catalyst design for methane oxidative coupling by using artificial neural network and hybrid genetic algorithm
-
Huang, K., Zhan, X. -L, Chen, F. -Q, & Lü, D. -W (2003). Catalyst design for methane oxidative coupling by using artificial neural network and hybrid genetic algorithm. Chem. Eng. Sci., 58 81-87.
-
(2003)
Chem. Eng. Sci.
, vol.58
, pp. 81-87
-
-
Huang, K.1
Zhan, X.-L.2
Chen, F.-Q.3
Lü, D.-W.4
-
6
-
-
0030174471
-
Intelligent systems in process engineering: A review
-
Stephanopoulos, G., & Han, C. (1996). Intelligent systems in process engineering: a review. Comp. Chem. Eng., 20 743-791.
-
(1996)
Comp. Chem. Eng.
, vol.20
, pp. 743-791
-
-
Stephanopoulos, G.1
Han, C.2
-
7
-
-
0022471098
-
Learning representations by backpropagating errors
-
Rumelhart, D., Hinton, G., & Williams, R. (1986). Learning representations by backpropagating errors. Nature, 323 533.
-
(1986)
Nature
, vol.323
, pp. 533
-
-
Rumelhart, D.1
Hinton, G.2
Williams, R.3
-
8
-
-
0003578240
-
-
Technical Report CMU-CS-88-162, Computer Science Department, Carnegie-Mellon University, Pittsburgh, PA
-
S.E. Fahlman, An empirical study of learning speed in back-propagation networks, Technical Report CMU-CS-88-162, Computer Science Department, Carnegie-Mellon University, Pittsburgh, PA, 1988.
-
(1988)
an Empirical Study of Learning Speed in Back-propagation Networks
-
-
Fahlman, S.E.1
-
9
-
-
84943274699
-
A direct adaptive method for faster backpropagation learning: The RPROP algorithm
-
San Francisco, CA, March 28-April 1
-
M. Riedmiller, H. Braun, A direct adaptive method for faster backpropagation learning: the RPROP algorithm, in: Proceedings of the IEEE International Conference On Neural Networks, San Francisco, CA, March 28-April 1, 1993.
-
(1993)
Proceedings of the IEEE International Conference On Neural Networks
-
-
Riedmiller, M.1
Braun, H.2
-
11
-
-
84887252594
-
Support vector method for function approximation, regression estimation and signal processing
-
Vapnik, V., Golowich, S., & Smola, A. (1996). Support vector method for function approximation, regression estimation and signal processing. Adv. Neural Inform. Process. Syst., 9 281-287.
-
(1996)
Adv. Neural Inform. Process. Syst.
, vol.9
, pp. 281-287
-
-
Vapnik, V.1
Golowich, S.2
Smola, A.3
-
13
-
-
0037279908
-
Support vector machines: A useful tool for process engineering applications
-
M. Agarwal, A.M. Jade, V.K. Jayaraman, B.D. Kulkarni, Support vector machines: a useful tool for process engineering applications, Chem. Eng. Prog. 99 (1) (2003) 57-62.
-
(2003)
Chem. Eng. Prog.
, vol.99
, Issue.1
, pp. 57-62
-
-
Agarwal, M.1
Jade, A.M.2
Jayaraman, V.K.3
Kulkarni, B.D.4
-
14
-
-
0345978376
-
Fault detection using support vector machines and artificial neural networks augmented by genetic algorithms
-
Jack, L. B., & Nandi, A. K. (2002). Fault detection using support vector machines and artificial neural networks augmented by genetic algorithms. Mech. Syst. Signal Process., 16 372-390.
-
(2002)
Mech. Syst. Signal Process
, vol.16
, pp. 372-390
-
-
Jack, L.B.1
Nandi, A.K.2
-
16
-
-
0003722376
-
-
Addison-Wesley, Reading, MA
-
D.E. Goldberg, Genetic Algorithms in Search, Optimization, and Machine Learning, Addison-Wesley, Reading, MA, 1989.
-
(1989)
Genetic Algorithms in Search, Optimization, and Machine Learning
-
-
Goldberg, D.E.1
-
19
-
-
0035300270
-
Optimization of continuous distillation columns using stochastic optimization approaches
-
Ramanathan, S. P., Mukherjee, S., Dahule, R. K., Ghosh, S., Rahman, I., Tambe, S. S., Ravetkar, D. D., & Kulkarni, B. D. (2001). Optimization of continuous distillation columns using stochastic optimization approaches. Trans. Inst. Chem. Eng., 79 310-321.
-
(2001)
Trans. Inst. Chem. Eng.
, vol.79
, pp. 310-321
-
-
Ramanathan, S.P.1
Mukherjee, S.2
Dahule, R.K.3
Ghosh, S.4
Rahman, I.5
Tambe, S.S.6
Ravetkar, D.D.7
Kulkarni, B.D.8
-
20
-
-
0035866512
-
High throughput synthesis and screening of catalytic materials case study of the search for a low temperature catalyst for oxidation of low concentration propane
-
Rodemerck, U., Wolf, D., Buyevskaya, U. V., Claus, P., Senkan, S., & Baerns, M. (2001). High throughput synthesis and screening of catalytic materials case study of the search for a low temperature catalyst for oxidation of low concentration propane. Chem. Eng. J., 82 3-11.
-
(2001)
Chem. Eng. J.
, vol.82
, pp. 3-11
-
-
Rodemerck, U.1
Wolf, D.2
Buyevskaya, U.V.3
Claus, P.4
Senkan, S.5
Baerns, M.6
-
21
-
-
0037110367
-
Solution of constrained optimization problems by multiobjective genetic algorithms
-
Sumanwar, V. S., Jayaraman, V. K., Kulkarni, B. D., Kusumakar, H. S., Gupta, K., & Rajesh, J. (2002). Solution of constrained optimization problems by multiobjective genetic algorithms. Comp. Chem. Eng., 26 1481-1492.
-
(2002)
Comp. Chem. Eng.
, vol.26
, pp. 1481-1492
-
-
Sumanwar, V.S.1
Jayaraman, V.K.2
Kulkarni, B.D.3
Kusumakar, H.S.4
Gupta, K.5
Rajesh, J.6
-
22
-
-
0036869074
-
Open loop control of particle size distribution in semi-batch emulsion copolymerization using genetic algorithms
-
Immanuel, C. D., & Doyle, F. J. (2002). Open loop control of particle size distribution in semi-batch emulsion copolymerization using genetic algorithms. Chem. Eng. Sci., 57 4415-4427.
-
(2002)
Chem. Eng. Sci.
, vol.57
, pp. 4415-4427
-
-
Immanuel, C.D.1
Doyle III, F.J.2
-
23
-
-
67049087694
-
Parameter estimation with genetic algorithms in control of fed-batch reactor
-
Nougués, J. M., Gran, M. D., & Puigjaner, L. (2002). Parameter estimation with genetic algorithms in control of fed-batch reactor. Chem. Eng. Process., 41 303-309.
-
(2002)
Chem. Eng. Process
, vol.41
, pp. 303-309
-
-
Nougués, J.M.1
Gran, M.D.2
Puigjaner, L.3
-
24
-
-
0037437342
-
Multiobjective optimization of an industrial styrene reactor
-
Yee, K., Ray, A. K., & Rangaiah, G. P. (2003). Multiobjective optimization of an industrial styrene reactor. Comp. Chem. Eng., 27 111-130.
-
(2003)
Comp. Chem. Eng.
, vol.27
, pp. 111-130
-
-
Yee, K.1
Ray, A.K.2
Rangaiah, G.P.3
-
25
-
-
0027284874
-
Understanding and using genetic algorithms. Part I. Concepts, properties and context
-
Lacasius, C. B., & Kateman, G. (1993). Understanding and using genetic algorithms. Part I. Concepts, properties and context. Chem. Intell. Lab. Syst., 19 1-33.
-
(1993)
Chem. Intell. Lab. Syst.
, vol.19
, pp. 1-33
-
-
Lacasius, C.B.1
Kateman, G.2
-
26
-
-
0027945489
-
Understanding and using genetic algorithms. Part II. Representation, configuration and hybridization
-
Lucasius, C. B., & Kateman, G. (1994). Understanding and using genetic algorithms. Part II. Representation, configuration and hybridization. Chem. Intell. Lab. Syst., 25 99-145.
-
(1994)
Chem. Intell. Lab. Syst.
, vol.25
, pp. 99-145
-
-
Lucasius, C.B.1
Kateman, G.2
-
27
-
-
0442289177
-
-
Wiley, Chichester, UK
-
V. Venkatasubramanian, A. Sundaram, Genetic algorithms: introduction and applications in: Encyclopaedia of Computational Chemistry, Wiley, Chichester, UK, 1998.
-
(1998)
Genetic Algorithms: Introduction and Applications In: Encyclopaedia of Computational Chemistry
-
-
Venkatasubramanian, V.1
Sundaram, A.2
-
28
-
-
0003770610
-
-
Addision-Wesley, Reading, MA
-
J.A. Freeman, D.M. Skapura, Neural Networks: Algorithms, Applications and Programming Techniques, Addision-Wesley, Reading, MA, 1991.
-
(1991)
Neural Networks: Algorithms, Applications and Programming Techniques
-
-
Freeman, J.A.1
Skapura, D.M.2
-
29
-
-
0001044176
-
Neural networks and their applications
-
Bishop, C. M. (1994). Neural networks and their applications. Rev. Sci. Instrum., 65 1803.
-
(1994)
Rev. Sci. Instrum.
, vol.65
, pp. 1803
-
-
Bishop, C.M.1
-
30
-
-
0035137139
-
Artificial neural-network-assisted stochastic process optimization strategies
-
Nandi, S., Ghosh, S., Tambe, S. S., & Kulkarni, B. D. (2001). Artificial neural-network-assisted stochastic process optimization strategies. AIChE J., 47 126-141.
-
(2001)
AIChE J.
, vol.47
, pp. 126-141
-
-
Nandi, S.1
Ghosh, S.2
Tambe, S.S.3
Kulkarni, B.D.4
-
31
-
-
27144489164
-
A tutorial on support vector machines for pattern recognition
-
Burges, C. (1998). A tutorial on support vector machines for pattern recognition. Data Mining Knowl. Disc., 2(2), 1-47.
-
(1998)
Data Mining Knowl. Disc.
, vol.2
, Issue.2
, pp. 1-47
-
-
Burges, C.1
-
32
-
-
0032098361
-
The connection between regularization operators and support vector kernels
-
Smola, A., Schölkopf, B., & Müller, K. R. (1998). The connection between regularization operators and support vector kernels. Neural Netw., 11 637-649.
-
(1998)
Neural Netw.
, vol.11
, pp. 637-649
-
-
Smola, A.1
Schölkopf, B.2
Müller, K.R.3
-
33
-
-
0000487102
-
Estimating support of a high-dimensional distribution
-
Schölkopf, B., Platt, J. C., Shawe-Taylor, J., Smola, A. J., & Williamson, R. C. (2001). Estimating support of a high-dimensional distribution. Neural Comput., 13 1443-1471.
-
(2001)
Neural Comput.
, vol.13
, pp. 1443-1471
-
-
Schölkopf, B.1
Platt, J.C.2
Shawe-Taylor, J.3
Smola, A.J.4
Williamson, R.C.5
-
34
-
-
0031375732
-
Nonlinear prediction of chaotic time series using support vector machines
-
S. Mukherjee, E. Osuna, F. Girosi, Nonlinear prediction of chaotic time series using support vector machines, in: Proceedings of the IEEE Workshop on Neural Networks for Signal Processing 7 (IEEE NNSP'97), 1997, pp. 511-519.
-
(1997)
Proceedings of the IEEE Workshop on Neural Networks for Signal Processing 7 (IEEE NNSP'97)
, pp. 511-519
-
-
Mukherjee, S.1
Osuna, E.2
Girosi, F.3
-
35
-
-
84956628443
-
Predicting time series with support vector machines
-
W. Gerstner, A. Germond, M. Hasler, J.-D. Nicoud (Eds.), Springer, Berlin Lecture Notes on Computer Science
-
K.R. Müller, A. Smola, G. Ratsch, B. Schölkopf, J. Kohlmorgen, V. Vapnik, Predicting time series with support vector machines, in: W. Gerstner, A. Germond, M. Hasler, J.-D. Nicoud (Eds.), Proceedings of the Conference on Artificial Neural Networks-ICANN'97, Lecture Notes on Computer Science, vol. 1327, Springer, Berlin, 1997, pp. 999-1004.
-
(1997)
Proceedings of the Conference on Artificial Neural Networks - ICANN'97
, vol.1327
, pp. 999-1004
-
-
Müller, K.R.1
Smola, A.2
Ratsch, G.3
Schölkopf, B.4
Kohlmorgen, J.5
Vapnik, V.6
-
37
-
-
85030905148
-
Process for the preparation of cumene
-
December 21
-
C. Perego, G. Pazzuconi, G. Girotti, G. Terzoni, Process for the preparation of cumene, Eur. Pat. Appl. EP629599 A1 (December 21, 1994).
-
(1994)
Eur. Pat. Appl. EP629599 A1
-
-
Perego, C.1
Pazzuconi, G.2
Girotti, G.3
Terzoni, G.4
-
38
-
-
85030910220
-
Alkylation catalyst for aromatic compounds for lower olefins
-
July 22
-
F. Cavani, G. Girotti, V. Arrigoni, G. Terzoni, Alkylation catalyst for aromatic compounds for lower olefins, US Patent 5650547 A (July 22, 1997).
-
(1997)
US Patent 5650547 A
-
-
Cavani, F.1
Girotti, G.2
Arrigoni, V.3
Terzoni, G.4
-
39
-
-
0030917939
-
Solid acid catalysts from clays: Cumene synthesis by benzene alkylation with propene catalyzed by cation exchanged aluminium pillared clays
-
Geatti, A., Lenarda, M., Storaro, L., Ganzerla, R., & Perissinotto, M. (1997). Solid acid catalysts from clays: cumene synthesis by benzene alkylation with propene catalyzed by cation exchanged aluminium pillared clays. J. Mol. Catal. A, 121 111-118.
-
(1997)
J. Mol. Catal. A
, vol.121
, pp. 111-118
-
-
Geatti, A.1
Lenarda, M.2
Storaro, L.3
Ganzerla, R.4
Perissinotto, M.5
-
40
-
-
0002488390
-
Advances in cumene production
-
June 5-12
-
G.R. Meima, Advances in cumene production, CATTECH, June 5-12, 1998.
-
(1998)
CATTECH
-
-
Meima, G.R.1
-
41
-
-
0035844966
-
Kinetics of isopropylation of benzene over Hbeta catalyst
-
Sridevi, U., Rao, B. K., Pradhan, N. C., Tambe, S. S., Satyanarayana, C. V., & Rao, B. S. (2001). Kinetics of isopropylation of benzene over Hbeta catalyst. Ind. Eng. Chem. Res., 40 3133-3138.
-
(2001)
Ind. Eng. Chem. Res.
, vol.40
, pp. 3133-3138
-
-
Sridevi, U.1
Rao, B.K.B.2
Pradhan, N.C.3
Tambe, S.S.4
Satyanarayana, C.V.5
Rao, B.S.6
-
43
-
-
0002714543
-
Making large-scale SVM learning practical
-
B. Schölkopf, C.J.C. Burges, A.J. Smola (Eds.), MIT Press, Cambridge, MA
-
T. Joachims, Making large-scale SVM learning practical, in: B. Schölkopf, C.J.C. Burges, A.J. Smola (Eds.), Advances in Kernel Methods-Support Vector Learning, MIT Press, Cambridge, MA, 1998.
-
(1998)
Advances in Kernel Methods-Support Vector Learning
-
-
Joachims, T.1
-
44
-
-
0003120218
-
Fast training of support vector machines using sequential minimal optimization
-
B. Schölkopf, C.J.C. Burges, A.J. Smola (Eds.), MIT Press, Cambridge, MA
-
J.C. Platt, Fast training of support vector machines using sequential minimal optimization, in: B. Schölkopf, C.J.C. Burges, A.J. Smola (Eds.), Advances in Kernel Methods-Support Vector Learning, MIT Press, Cambridge, MA, 1998.
-
(1998)
Advances in Kernel Methods - Support Vector Learning
-
-
Platt, J.C.1
|