메뉴 건너뛰기




Volumn , Issue , 2012, Pages 3-12

Wide-area scene mapping for mobile visual tracking

Author keywords

C.5.3 Computer System Implementation : Microcomputers Portable Devices (e.g., laptops, personal digital assistants); I.2.10 Artificial Intelligence : Vision and Scene Understanding 3D stereo scene analysis; I.4.8 Image Processing and Computer Vision : Scene Analysis Tracking; I.5.4 Pattern Recognition : Applications Computer Vision

Indexed keywords

CAMERA IMAGES; CAMERA TRACKING; CAMERA-BASED; FEATURE POINT MATCHING; HAND HELD DEVICE; HANDHELDS; I.4.8 [IMAGE PROCESSING AND COMPUTER VISION]: SCENE ANALYSIS - TRACKING; LIVE CAMERA; OFF-LINE MODELING; OMNIDIRECTIONAL CAMERAS; OUTDOOR SPACE; POINT CLOUD; PORTABLE DEVICE; POSE TRACKING; REAL TIME TRACKING; ROTATIONAL ERRORS; SIMULTANEOUS LOCALIZATION AND MAPPING; SYSTEM EVALUATION; UNPREPARED ENVIRONMENTS; VISION AND SCENE UNDERSTANDING; VISUAL TRACKING; WIDE AREA;

EID: 84873529428     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/ISMAR.2012.6402531     Document Type: Conference Paper
Times cited : (65)

References (26)
  • 4
    • 0742276344 scopus 로고    scopus 로고
    • A plane-sweep strategy for the 3D reconstruction of buildings from multiple images
    • C. Baillard and A. Zisserman. A plane-sweep strategy for the 3D reconstruction of buildings from multiple images. International Archives of Photogrammetry and Remote Sensing, 33(B2; PART 2):56-62, 2000.
    • (2000) International Archives of Photogrammetry and Remote Sensing , vol.33 , Issue.B2 PART 2 , pp. 56-62
    • Baillard, C.1    Zisserman, A.2
  • 6
    • 24644499558 scopus 로고    scopus 로고
    • Matching with PROSAC-progressive sample consensus
    • IEEE
    • O. Chum and J. Matas. Matching with PROSAC-progressive sample consensus. In Computer Vision and Pattern Recognition, pages 220-226 vol. 1. IEEE, 2005.
    • (2005) Computer Vision and Pattern Recognition , vol.1 , pp. 220-226
    • Chum, O.1    Matas, J.2
  • 7
    • 0019574599 scopus 로고
    • Random sample consensus: A paradigm for model fitting with applications to image analysis and automated cartography
    • M. Fischler and R. Bolles. Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography. Commun. ACM, 24(6):381-395, 1981.
    • (1981) Commun. ACM , vol.24 , Issue.6 , pp. 381-395
    • Fischler, M.1    Bolles, R.2
  • 10
    • 79957666017 scopus 로고    scopus 로고
    • Real-time scalable recognition and tracking based on the server-client model for mobile Augmented Reality
    • J. Ha, K. Cho, F. A. Rojas, and H. S. Yang. Real-time scalable recognition and tracking based on the server-client model for mobile Augmented Reality. International Symposium on VR Innovation (ISVRI), pages 267-272, 2011.
    • (2011) International Symposium on VR Innovation (ISVRI) , pp. 267-272
    • Ha, J.1    Cho, K.2    Rojas, F.A.3    Yang, H.S.4
  • 14
    • 56749105455 scopus 로고    scopus 로고
    • Improving the agility of keyframe-based SLAM
    • Springer
    • G. Klein and D. Murray. Improving the agility of keyframe-based SLAM. In Computer Vision-ECCV 2008, pages 802-815. Springer, 2008.
    • (2008) Computer Vision-ECCV 2008 , pp. 802-815
    • Klein, G.1    Murray, D.2
  • 16
    • 78149320258 scopus 로고    scopus 로고
    • Avoiding confusing features in place recognition
    • J. Knopp, J. Sivic, and T. Pajdla. Avoiding confusing features in place recognition. Computer Vision-ECCV 2010, pages 748-761, 2010.
    • (2010) Computer Vision-ECCV 2010 , pp. 748-761
    • Knopp, J.1    Sivic, J.2    Pajdla, T.3
  • 18
    • 3042535216 scopus 로고    scopus 로고
    • Distinctive image features from scale-invariant keypoints
    • D. G. Lowe. Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vision, 60(2):91-110, 2004.
    • (2004) Int. J. Comput. Vision , vol.60 , Issue.2 , pp. 91-110
    • Lowe, D.G.1
  • 20
    • 84873536250 scopus 로고    scopus 로고
    • Estimating camera position and posture by using feature landmark database
    • M. Oe, T. Sato, and N. Yokoya. Estimating camera position and posture by using feature landmark database. Image Analysis, pages 257-260, 2005.
    • (2005) Image Analysis , pp. 257-260
    • Oe, M.1    Sato, T.2    Yokoya, N.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.