메뉴 건너뛰기




Volumn , Issue , 2007, Pages

Noise robust spectral clustering

Author keywords

[No Author keywords available]

Indexed keywords

COMPUTER VISION; PHOTOMAPPING;

EID: 50649124911     PISSN: 15505499     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/ICCV.2007.4409061     Document Type: Conference Paper
Times cited : (72)

References (21)
  • 1
    • 2342654611 scopus 로고    scopus 로고
    • A unifying theorem for spectral embedding and clustering
    • M. Brand and K. Huang. A unifying theorem for spectral embedding and clustering. In AISTATS, 2003.
    • (2003) AISTATS
    • Brand, M.1    Huang, K.2
  • 2
    • 50649084677 scopus 로고    scopus 로고
    • Cluster kernels for semi-supervised learning
    • O. Chapelle, J. Weston, and B. Scholkopf. Cluster kernels for semi-supervised learning. In NIPS, 2003.
    • (2003) NIPS
    • Chapelle, O.1    Weston, J.2    Scholkopf, B.3
  • 3
    • 0042942750 scopus 로고    scopus 로고
    • Robust data clustering
    • A. Fred and A. Jain. Robust data clustering. In CVPR, pages 128-133, 2003.
    • (2003) CVPR , pp. 128-133
    • Fred, A.1    Jain, A.2
  • 4
    • 4243128193 scopus 로고    scopus 로고
    • On clusterings: Good, bad and spectral
    • R. Kannan, S. Vempala, and A. Vetta. On clusterings: Good, bad and spectral. J. ACM, 51(3):497-515, 2004.
    • (2004) J. ACM , vol.51 , Issue.3 , pp. 497-515
    • Kannan, R.1    Vempala, S.2    Vetta, A.3
  • 5
    • 0041775676 scopus 로고    scopus 로고
    • Diffusion kernels on graphs and other discrete input spaces
    • R. Kondor and J. Lafferty. Diffusion kernels on graphs and other discrete input spaces. In ICML, 2002.
    • (2002) ICML
    • Kondor, R.1    Lafferty, J.2
  • 6
    • 0012287167 scopus 로고    scopus 로고
    • Learning segmentation by random walks
    • M. Meila and J. Shi. Learning segmentation by random walks. In NIPS, pages 873-879, 2000.
    • (2000) NIPS , pp. 873-879
    • Meila, M.1    Shi, J.2
  • 7
    • 84864071145 scopus 로고    scopus 로고
    • Diffusion maps, spectral clustering and eigenfunctions of fokkerplanck operators
    • B. Nadler, S. Lafon, R. Coifman, and I. Kevrekidis. Diffusion maps, spectral clustering and eigenfunctions of fokkerplanck operators. In NIPS, pages 955-962, 2006.
    • (2006) NIPS , pp. 955-962
    • Nadler, B.1    Lafon, S.2    Coifman, R.3    Kevrekidis, I.4
  • 8
    • 0041875229 scopus 로고    scopus 로고
    • On spectral clustering: Analysis and an algorithm
    • A. Y. Ng, M. I. Jordan, and Y. Weiss. On spectral clustering: Analysis and an algorithm. In NIPS, pages 849-856, 2001.
    • (2001) NIPS , pp. 849-856
    • Ng, A.Y.1    Jordan, M.I.2    Weiss, Y.3
  • 9
    • 0034244751 scopus 로고    scopus 로고
    • Normalized cuts and image segmentation
    • J. Shi and J. Malik. Normalized cuts and image segmentation. IEEE Trans. PAMI, 22(8):888-905, 2000.
    • (2000) IEEE Trans. PAMI , vol.22 , Issue.8 , pp. 888-905
    • Shi, J.1    Malik, J.2
  • 10
    • 14344259597 scopus 로고    scopus 로고
    • Kernels and regularization on graphs
    • A. Smola and R. Kondor. Kernels and regularization on graphs. In COLT, 2003.
    • (2003) COLT
    • Smola, A.1    Kondor, R.2
  • 12
    • 0041965980 scopus 로고    scopus 로고
    • Cluster ensembles- A knowledge reuse framework for combining multiple partitions
    • A. Strehl and J. Ghosh. Cluster ensembles- A knowledge reuse framework for combining multiple partitions. Journal of Machine Learning Research, 3(3):583-617, 2003.
    • (2003) Journal of Machine Learning Research , vol.3 , Issue.3 , pp. 583-617
    • Strehl, A.1    Ghosh, J.2
  • 13
    • 84864041449 scopus 로고    scopus 로고
    • Generalized maximum margin clustering and unsupervised kernel learning
    • H. Valizadegan and R. Jin. Generalized maximum margin clustering and unsupervised kernel learning. In NIPS, 2007.
    • (2007) NIPS
    • Valizadegan, H.1    Jin, R.2
  • 14
    • 34547404361 scopus 로고    scopus 로고
    • A comparison of spectral clustering algorithms
    • Technical Report 03-05-01, University of Washington Department of Computer Science
    • D. Verma and M. Meila. A comparison of spectral clustering algorithms. Technical Report 03-05-01, University of Washington Department of Computer Science, 2003.
    • (2003)
    • Verma, D.1    Meila, M.2
  • 15
    • 0033285447 scopus 로고    scopus 로고
    • Segmentation using eigenvectors: A unifying view
    • Y.Weiss. Segmentation using eigenvectors: A unifying view. In ICCV, pages 975-982, 1999.
    • (1999) ICCV , pp. 975-982
    • Weiss, Y.1
  • 16
    • 0344551898 scopus 로고    scopus 로고
    • Multiclass spectral clustering
    • S. X. Yu and J. Shi. Multiclass spectral clustering. In ICCV, pages 313-319, 2003.
    • (2003) ICCV , pp. 313-319
    • Yu, S.X.1    Shi, J.2
  • 17
    • 84898995558 scopus 로고    scopus 로고
    • Self-tuning spectral clustering
    • L. Zelnik-Manor and P. Perona. Self-tuning spectral clustering. In NIPS, pages 1601-1608, 2005.
    • (2005) NIPS , pp. 1601-1608
    • Zelnik-Manor, L.1    Perona, P.2
  • 18
    • 84864072823 scopus 로고    scopus 로고
    • Analysis of spectral kernel design based semi-supervised learning
    • T. Zhang and R. Ando. Analysis of spectral kernel design based semi-supervised learning. In NIPS, volume 18, pages 1601-1608.
    • NIPS , vol.18 , pp. 1601-1608
    • Zhang, T.1    Ando, R.2
  • 20
    • 1942484430 scopus 로고    scopus 로고
    • Semi-supervised learning using gaussian fields and harmonic functions
    • X. Zhu, Z. Ghahramani, and J. Lafferty. Semi-supervised learning using gaussian fields and harmonic functions. In ICML, 2003.
    • (2003) ICML
    • Zhu, X.1    Ghahramani, Z.2    Lafferty, J.3
  • 21
    • 84899028404 scopus 로고    scopus 로고
    • Nonparametric transforms of graph kernels for semi-supervised learning
    • X. Zhu, J. Kandola, Z. Ghahramani, and J. Lafferty. Nonparametric transforms of graph kernels for semi-supervised learning. In NIPS, pages 1641-1648, 2005.
    • (2005) NIPS , pp. 1641-1648
    • Zhu, X.1    Kandola, J.2    Ghahramani, Z.3    Lafferty, J.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.