메뉴 건너뛰기




Volumn 27, Issue 6, 2006, Pages 627-635

Feature selection in robust clustering based on Laplace mixture

Author keywords

Clustering; EM algorithm; Feature selection; Kruskal Wallis statistical test; Laplace distribution

Indexed keywords

ALGORITHMS; COMPUTER SIMULATION; LAPLACE TRANSFORMS; MATHEMATICAL MODELS; ROBUSTNESS (CONTROL SYSTEMS); STATISTICAL METHODS;

EID: 32844462745     PISSN: 01678655     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.patrec.2005.09.028     Document Type: Article
Times cited : (43)

References (26)
  • 1
    • 0033536012 scopus 로고    scopus 로고
    • Broad patterns of gene expression revealed by clustering analysis of tumor and normal colon tissues probed by oligonucleotide arrays
    • Alon, U., Barkai, N., Notterman, D.A., Gish, K., Ybarra, S., Mack, D., Levine, A.J., 1999. Broad patterns of gene expression revealed by clustering analysis of tumor and normal colon tissues probed by oligonucleotide arrays. In: Proc. National Academy of Sciences, vol. 96, pp. 6745-6750.
    • (1999) Proc. National Academy of Sciences , vol.96 , pp. 6745-6750
    • Alon, U.1    Barkai, N.2    Notterman, D.A.3    Gish, K.4    Ybarra, S.5    Mack, D.6    Levine, A.J.7
  • 2
    • 4344569806 scopus 로고    scopus 로고
    • Interactive content-based image retrieval using Laplacian mixture model in wavelet domain
    • Vancouver Canada
    • T. Amin, and L. Guan Interactive content-based image retrieval using Laplacian mixture model in wavelet domain Proc. IEEE Internat. Symp. on Circuits and Systems 2004 Vancouver Canada
    • (2004) Proc. IEEE Internat. Symp. on Circuits and Systems
    • Amin, T.1    Guan, L.2
  • 3
    • 0027453616 scopus 로고
    • Model-based Gaussian and non-Gaussian clustering
    • J. Banfield, and A. Raftery Model-based Gaussian and non-Gaussian clustering Biometrics 49 1993 803 821
    • (1993) Biometrics , vol.49 , pp. 803-821
    • Banfield, J.1    Raftery, A.2
  • 5
    • 0001626339 scopus 로고
    • A classification em algorithm for clustering and two stochastic versions
    • G. Celeux, and G. Govaert A classification EM algorithm for clustering and two stochastic versions Comput. Statist. Data Anal. 14 1992 315 332
    • (1992) Comput. Statist. Data Anal. , Issue.14 , pp. 315-332
    • Celeux, G.1    Govaert, G.2
  • 9
    • 0032385158 scopus 로고    scopus 로고
    • A multivariate generalized Laplace distribution
    • M.D. Ernst A multivariate generalized Laplace distribution Comput. Statist. 13 1998 227 232
    • (1998) Comput. Statist. , vol.13 , pp. 227-232
    • Ernst, M.D.1
  • 12
    • 33745561205 scopus 로고    scopus 로고
    • An introduction to variable and feature selection
    • I. Guyon, and A. Elisseeff An introduction to variable and feature selection J. Mach. Learn. Res. 3 2003 1157 1182
    • (2003) J. Mach. Learn. Res. , vol.3 , pp. 1157-1182
    • Guyon, I.1    Elisseeff, A.2
  • 13
    • 0036161259 scopus 로고    scopus 로고
    • Diagnosis of multiple cancer types by shrunken centroids of gene expression
    • I. Guyon, J. Weston, S. Barnhill, and V. Vapnik Diagnosis of multiple cancer types by shrunken centroids of gene expression Mach. Learn. 46 2002 389 422
    • (2002) Mach. Learn. , vol.46 , pp. 389-422
    • Guyon, I.1    Weston, J.2    Barnhill, S.3    Vapnik, V.4
  • 15
    • 0031381525 scopus 로고    scopus 로고
    • Wrappers for feature selection
    • R. Kohavi, and G. John Wrappers for feature selection Artificial Intell. 97 1-2 1997 273 324
    • (1997) Artificial Intell. , vol.97 , Issue.1-2 , pp. 273-324
    • Kohavi, R.1    John, G.2
  • 19
    • 17644413229 scopus 로고    scopus 로고
    • Overcomplete source separation using Laplacian mixture models
    • N. Mitianoudis, and T. Stathaki Overcomplete source separation using Laplacian mixture models IEEE Signal Process. Lett. 12 4 2005 277 280
    • (2005) IEEE Signal Process. Lett. , vol.12 , Issue.4 , pp. 277-280
    • Mitianoudis, N.1    Stathaki, T.2
  • 21
    • 85135169713 scopus 로고    scopus 로고
    • Fast likelihood computation methods for continuous mixture densities in large vocabulary speech recognition
    • Ortmanns, S., Firzlaff, T., Ney, H., 1997. Fast likelihood computation methods for continuous mixture densities in large vocabulary speech recognition. In: Proc. EUROSPEECH-97: Eur. Conf. Speech Technol., pp. 139-142.
    • (1997) Proc. EUROSPEECH-97: Eur. Conf. Speech Technol. , pp. 139-142
    • Ortmanns, S.1    Firzlaff, T.2    Ney, H.3
  • 24
    • 0021202650 scopus 로고
    • K-means-type algorithms: A generalized convergence theorem and characterization of local optimality
    • S. Selim, and M. Ismail K-means-type algorithms: A generalized convergence theorem and characterization of local optimality IEEE Trans. Pattern Anal. Machine Intell. 6 1 1984 81 87
    • (1984) IEEE Trans. Pattern Anal. Machine Intell. , vol.6 , Issue.1 , pp. 81-87
    • Selim, S.1    Ismail, M.2
  • 25


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.