메뉴 건너뛰기




Volumn 18, Issue 1, 2010, Pages 67-79

Fuzzy PCA-guided robust k-means clustering

Author keywords

Clustering; Data mining; Kernel trick; Principalcomponent analysis (PCA)

Indexed keywords

CLUSTER CORES; CLUSTER VALIDITY; CLUSTERING APPROACH; CLUSTERING DATA; CROSSING CURVES; K-MEANS; K-MEANS CLUSTERING; KERNEL TRICK; NEW APPROACHES; NUMERICAL EXPERIMENTS; ROBUST CLUSTERING;

EID: 76849102157     PISSN: 10636706     EISSN: None     Source Type: Journal    
DOI: 10.1109/TFUZZ.2009.2036603     Document Type: Article
Times cited : (83)

References (34)
  • 1
    • 14344257496 scopus 로고    scopus 로고
    • K-means clustering via principal component analysis
    • C. Ding and X. He, "K-means clustering via principal component analysis," in Proc. Int. Conf. Mach. Learning, 2004, pp. 225-232.
    • (2004) Proc. Int. Conf. Mach. Learning , pp. 225-232
    • Ding, C.1    He, X.2
  • 2
    • 0001457509 scopus 로고
    • Some methods of classification and analysis of multivariate observations
    • J. B. MacQueen, "Some methods of classification and analysis of multivariate observations," in Proc. 5th Berkeley Symp. Math. Stat. Prob., 1967, pp. 281-297.
    • (1967) Proc. 5th Berkeley Symp. Math. Stat. Prob. , pp. 281-297
    • MacQueen, J.B.1
  • 3
  • 5
    • 0015011520 scopus 로고
    • An algorithm for finding intrinsic dimensionality of data
    • Feb.
    • K. Fukunaga and D. R. Olsen, "An algorithm for finding intrinsic dimensionality of data," IEEE Trans. Comput., vol.C-20, no.2, pp. 176-183, Feb. 1971.
    • (1971) IEEE Trans. Comput. , vol.C-20 , Issue.2 , pp. 176-183
    • Fukunaga, K.1    Olsen, D.R.2
  • 6
    • 0030737323 scopus 로고    scopus 로고
    • Modeling the manifolds of images of handwritten digits
    • Jan.
    • G. E.Hinton, P. Dayan, and M. Revow, "Modeling the manifolds of images of handwritten digits," IEEE Trans. Neural Netw., vol.8, no.1, pp. 65-74, Jan. 1997.
    • (1997) IEEE Trans. Neural Netw. , vol.8 , Issue.1 , pp. 65-74
    • Hinton, G.E.1    Dayan, P.2    Revow, M.3
  • 7
    • 48349147529 scopus 로고    scopus 로고
    • Pre-clustered principal component analysis for fast training of newface databases
    • J.-H. Na, M.-S. Park, and J.-Y. Choi, "Pre-clustered principal component analysis for fast training of newface databases," in Proc. Int.Conf. Control, Autom. Syst., 2007, pp. 1144-1149.
    • (2007) Proc. Int.Conf. Control, Autom. Syst. , pp. 1144-1149
    • Na, J.-H.1    Park, M.-S.2    Choi, J.-Y.3
  • 8
    • 20444434746 scopus 로고    scopus 로고
    • A heuristicK-means clustering algorithm by kernel PCA
    • M. Xu and P. Fränti, "A heuristicK-means clustering algorithm by kernel PCA," in Proc. Int. Conf. Image Process., 2004, vol.5, pp. 3503-3506.
    • (2004) Proc. Int. Conf. Image Process. , vol.5 , pp. 3503-3506
    • Xu, M.1    Fränti, P.2
  • 9
    • 16244421048 scopus 로고    scopus 로고
    • A deterministic method for initializing K-means clustering
    • T. Su and J. Dy, "A deterministic method for initializing K-means clustering," in Proc. 16th IEEE Int. Conf. Tools Artif. Intell., 2004, pp. 784-786.
    • (2004) Proc. 16th IEEE Int. Conf. Tools Artif. Intell. , pp. 784-786
    • Su, T.1    Dy, J.2
  • 10
    • 0141689062 scopus 로고    scopus 로고
    • Fuzzy principal component analysis and its application
    • Y. Yabuuchi and J. Watada, "Fuzzy principal component analysis and its application," Biomed. Fuzzy Human Sci., vol.3, pp. 83-92, 1997.
    • (1997) Biomed. Fuzzy Human Sci. , vol.3 , pp. 83-92
    • Yabuuchi, Y.1    Watada, J.2
  • 11
    • 0000586827 scopus 로고
    • Characterization and detection of noise in clustering
    • R. N. Dav́e, "Characterization and detection of noise in clustering," Pattern Recognit. Lett., vol.12, no.11, pp. 657-664, 1991.
    • (1991) Pattern Recognit. Lett. , vol.12 , Issue.11 , pp. 657-664
    • Dav́e, R.N.1
  • 12
    • 0031139176 scopus 로고    scopus 로고
    • Robust clustering methods: A unified view
    • May
    • R. N. Dav́e and R. Krishnapuram, "Robust clustering methods: A unified view," IEEE Trans. Fuzzy Syst., vol.5, no.2, pp. 270-293, May 1997.
    • (1997) IEEE Trans. Fuzzy Syst. , vol.5 , Issue.2 , pp. 270-293
    • Dav́e, R.N.1    Krishnapuram, R.2
  • 14
    • 0031493778 scopus 로고    scopus 로고
    • Trimmed kmeans: An attempt to robustify quantizers
    • J. A. Cuesta-Albertos, A. Gordaliza, and D. C. Matŕan, "Trimmed kmeans: An attempt to robustify quantizers," Ann. Stat., vol.25, no.2, pp. 553-576, 1997.
    • (1997) Ann. Stat. , vol.25 , Issue.2 , pp. 553-576
    • Cuesta-Albertos, J.A.1    Gordaliza, A.2    Matŕan, D.C.3
  • 15
    • 1542532405 scopus 로고    scopus 로고
    • Robustness properties of kmeans and trimmed k-means
    • Sep.
    • L. A. Garcia-Escudero and A. Gordaliza, "Robustness properties of kmeans and trimmed k-means," J. Amer. Stat. Assoc., vol.94, no.447, pp. 956-969, Sep. 1999.
    • (1999) J. Amer. Stat. Assoc. , vol.94 , Issue.447 , pp. 956-969
    • Garcia-Escudero, L.A.1    Gordaliza, A.2
  • 16
    • 44849102097 scopus 로고    scopus 로고
    • Alpha-cut implemented fuzzy clustering algorithms and switching regressions
    • Jun.
    • M.-S. Yang, K.-L. Wu, J.-N. Hsieh, and J. Yu, "Alpha-cut implemented fuzzy clustering algorithms and switching regressions," IEEE Trans. Syst., Man, Cybern. B, Cybern., vol.38, no.3, pp. 588-603, Jun. 2008.
    • (2008) IEEE Trans. Syst., Man, Cybern. B, Cybern. , vol.38 , Issue.3 , pp. 588-603
    • Yang, M.-S.1    Wu, K.-L.2    Hsieh, J.-N.3    Yu, J.4
  • 17
    • 26844532803 scopus 로고    scopus 로고
    • A possibilistic fuzzy c-means clustering algorithm
    • Aug.
    • N. R. Pal, K. Pal, J. M. Keller, and J. C. Bezdek, "A possibilistic fuzzy c-means clustering algorithm," IEEE Trans. Fuzzy Syst., vol.13, no.4, pp. 508-516, Aug. 2005.
    • (2005) IEEE Trans. Fuzzy Syst. , vol.13 , Issue.4 , pp. 508-516
    • Pal, N.R.1    Pal, K.2    Keller, J.M.3    Bezdek, J.C.4
  • 18
    • 0027595430 scopus 로고
    • Apossibilistic approach to clustering
    • May
    • R. Krishnapuram and J.M.Keller, "Apossibilistic approach to clustering," IEEE Trans. Fuzzy Syst., vol.1, no.2, pp. 98-110, May 1993.
    • (1993) IEEE Trans. Fuzzy Syst. , vol.1 , Issue.2 , pp. 98-110
    • Krishnapuram, R.1    Keller, J.M.2
  • 19
    • 33747602096 scopus 로고    scopus 로고
    • Soft transition from probabilistic to possibilistic fuzzy clustering
    • DOI 10.1109/TFUZZ.2006.876740
    • F. Masulli and S. Rovetta, "Soft transition from probabilistic to possibilistic fuzzy clustering," IEEE Trans. Fuzzy Syst., vol.14, no.4, pp. 516-527, Aug. 2006. (Pubitemid 44263557)
    • (2006) IEEE Transactions on Fuzzy Systems , vol.14 , Issue.4 , pp. 516-527
    • Masulli, F.1    Rovetta, S.2
  • 20
    • 0030142027 scopus 로고    scopus 로고
    • Extracting straight lines by sequential fuzzy clustering
    • K. Tsuda,M.Minoh, and K. Ikeda, "Extracting straight lines by sequential fuzzy clustering," Pattern Recognit. Lett., vol.17, pp. 643-649, 1996.
    • (1996) Pattern Recognit. Lett. , vol.17 , pp. 643-649
    • Tsuda, K.1    Minoh, M.2    Ikeda, K.3
  • 21
    • 0032741455 scopus 로고    scopus 로고
    • Sequential fuzzy cluster extraction by a graph spectral method
    • K. Inoue and K. Urahama, "Sequential fuzzy cluster extraction by a graph spectral method," Pattern Recognit. Lett., vol.20, pp. 699-705, 1999.
    • (1999) Pattern Recognit. Lett. , vol.20 , pp. 699-705
    • Inoue, K.1    Urahama, K.2
  • 22
    • 34548583274 scopus 로고    scopus 로고
    • A tutorial on spectral clustering
    • U. Luxburg, "A tutorial on spectral clustering," Stat. Comput., vol.17, no.4, pp. 395-416, 2007.
    • (2007) Stat. Comput. , vol.17 , Issue.4 , pp. 395-416
    • Luxburg, U.1
  • 24
    • 14344262439 scopus 로고    scopus 로고
    • Linearized cluster assignment via spectral ordering
    • C. Ding and X. He, "Linearized cluster assignment via spectral ordering," in Proc. Int. Conf. Mach. Learning, 2004, pp. 233-240.
    • (2004) Proc. Int. Conf. Mach. Learning , pp. 233-240
    • Ding, C.1    He, X.2
  • 28
    • 0347243182 scopus 로고    scopus 로고
    • Nonlinear component analysis as a kernel eigenvalue problem
    • B. Schölkopf, A. Smola, and K.Müller, "Nonlinear component analysis as a kernel eigenvalue problem," Neural Comput., vol.10, no.5, pp. 1299-1319, 1998.
    • (1998) Neural Comput. , vol.10 , Issue.5 , pp. 1299-1319
    • Schölkopf, B.1    Smola, A.2    Müller, K.3
  • 29
    • 56549113284 scopus 로고    scopus 로고
    • UCI machine learning repository
    • Univ. Calif., Irvine [Online]. Available
    • A. Asuncion and D. J. Newman. (2007). UCI machine learning repository. School Inf. Comput. Sci., Univ. Calif., Irvine [Online]. Available: http://www.ics.uci.edu/mlearn/MLRepository.html
    • (2007) School Inf. Comput. Sci.
    • Asuncion, A.1    Newman, D.J.2
  • 31
    • 35348896605 scopus 로고    scopus 로고
    • Visual assessment of clustering tendency for rectangular dissimilarity matrices
    • Oct.
    • J. C. Bezdek, R. J. Hathaway, and J. M. Huband, "Visual assessment of clustering tendency for rectangular dissimilarity matrices," IEEE Trans. Fuzzy Syst., vol.15, no.5, pp. 890-903, Oct. 2007.
    • (2007) IEEE Trans. Fuzzy Syst. , vol.15 , Issue.5 , pp. 890-903
    • Bezdek, J.C.1    Hathaway, R.J.2    Huband, J.M.3
  • 32
    • 1942532746 scopus 로고    scopus 로고
    • Linear fuzzy clustering techniqueswith missing values and their application to local principal component analysis
    • Apr.
    • K. Honda andH. Ichihashi, "Linear fuzzy clustering techniqueswith missing values and their application to local principal component analysis," IEEE Trans. Fuzzy Systems, vol.12, no.2, pp. 183-193, Apr. 2004.
    • (2004) IEEE Trans. Fuzzy Systems , vol.12 , Issue.2 , pp. 183-193
    • Honda, K.1    Ichihashi, H.2
  • 33
    • 26844514824 scopus 로고    scopus 로고
    • Regularized linear fuzzy clustering and probabilistic PCA mixture models
    • Aug.
    • K. Honda and H. Ichihashi, "Regularized linear fuzzy clustering and probabilistic PCA mixture models," IEEE Trans. Fuzzy Syst., vol.13, no.4, pp. 508-516, Aug. 2005.
    • (2005) IEEE Trans. Fuzzy Syst. , vol.13 , Issue.4 , pp. 508-516
    • Honda, K.1    Ichihashi, H.2
  • 34
    • 35348813741 scopus 로고    scopus 로고
    • Linear fuzzy clustering with selection of variables using graded possibilistic approach
    • Oct.
    • K. Honda, H. Ichihashi, F. Masulli, and S. Rovetta, "Linear fuzzy clustering with selection of variables using graded possibilistic approach," IEEE Trans. Fuzzy Syst., vol.15, no.5, pp. 878-889, Oct. 2007.
    • (2007) IEEE Trans. Fuzzy Syst. , vol.15 , Issue.5 , pp. 878-889
    • Honda, K.1    Ichihashi, H.2    Masulli, F.3    Rovetta, S.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.