메뉴 건너뛰기




Volumn 36, Issue 4, 2012, Pages 2219-2224

Epileptic seizure detection using probability distribution based on equal frequency discretization

Author keywords

Curve fitting; EEG signals; Epileptic seizure detection; Equal frequency discretization (EFD); Mean square error (MSE); Multilayer perceptron neural network (MLPNN); Probability distribution

Indexed keywords

ARTICLE; CONTROLLED STUDY; CURVE FITTING; DENSITY; ELECTROENCEPHALOGRAM; HUMAN; NERVE CELL NETWORK; PERCEPTRON; PROBABILITY; SEIZURE; STATISTICAL PARAMETERS; ALGORITHM; COMPUTER ASSISTED DIAGNOSIS; ELECTROENCEPHALOGRAPHY; EPILEPSY; PATHOPHYSIOLOGY; SIGNAL PROCESSING;

EID: 84873022639     PISSN: 01485598     EISSN: 1573689X     Source Type: Journal    
DOI: 10.1007/s10916-011-9689-y     Document Type: Article
Times cited : (24)

References (40)
  • 1
    • 0037441741 scopus 로고    scopus 로고
    • Analysis of EEG records in an epileptic patient using wavelet transform
    • 10.1016/S0165-0270(02)00340-0
    • Adeli, H., Zhou, Z., and Dadmehr, N., Analysis of EEG records in an epileptic patient using wavelet transform. J. Neurosci. Meth. 123:69-87, 2003.
    • (2003) J. Neurosci. Meth. , vol.123 , pp. 69-87
    • Adeli, H.1    Zhou, Z.2    Dadmehr, N.3
  • 2
    • 84856963277 scopus 로고    scopus 로고
    • Automated epileptic seizure detection in EEG signals using fast-ICA and neural network
    • Sivasankari, N., and Thanushkodi, K., Automated epileptic seizure detection in EEG signals using fast-ICA and neural network. Int. J. Adv. Soft Comput. Appl. 1(2):91-104, 2009.
    • (2009) Int. J. Adv. Soft Comput. Appl. , vol.1 , Issue.2 , pp. 91-104
    • Sivasankari, N.1    Thanushkodi, K.2
  • 3
    • 71349088028 scopus 로고    scopus 로고
    • Entropies based detection of epileptic seizures with artificial neural network classifiers
    • 10.1016/j.eswa.2009.09.051
    • Pravin-Kumar, S., Sriraam, N., Benakop, P. G., and Jinaga, B. C., Entropies based detection of epileptic seizures with artificial neural network classifiers. Expert Syst. Appl. 37:3284-3291, 2010.
    • (2010) Expert Syst. Appl. , vol.37 , pp. 3284-3291
    • Pravin-Kumar, S.1    Sriraam, N.2    Benakop, P.G.3    Jinaga, B.C.4
  • 4
    • 26944458497 scopus 로고    scopus 로고
    • Adaptive neuro-fuzzy inference system for classification of EEG signals using wavelet coefficients
    • 10.1016/j.jneumeth.2005.04.013
    • Guler, I., and Ubeyli, E. D., Adaptive neuro-fuzzy inference system for classification of EEG signals using wavelet coefficients. J. Neurosci. Meth. 148:113-121, 2005.
    • (2005) J. Neurosci. Meth. , vol.148 , pp. 113-121
    • Guler, I.1    Ubeyli, E.D.2
  • 5
    • 0038398958 scopus 로고    scopus 로고
    • Wavelet based automatic seizure detection in intracerebral electroencephalogram
    • 10.1016/S1388-2457(03)00035-X
    • Khan, Y. U., and Gotman, J., Wavelet based automatic seizure detection in intracerebral electroencephalogram. Clin. Neurophysiol. 114:898-908, 2003.
    • (2003) Clin. Neurophysiol. , vol.114 , pp. 898-908
    • Khan, Y.U.1    Gotman, J.2
  • 6
    • 5644255894 scopus 로고    scopus 로고
    • Automatic recognition of alertness level by using wavelet transform and artificial neural network
    • 10.1016/j.jneumeth.2004.04.027
    • Kiymik, M. K., Akin, M., and Subasi, A., Automatic recognition of alertness level by using wavelet transform and artificial neural network. J. Neurosci. Meth. 139:231-240, 2004.
    • (2004) J. Neurosci. Meth. , vol.139 , pp. 231-240
    • Kiymik, M.K.1    Akin, M.2    Subasi, A.3
  • 7
    • 56349101801 scopus 로고    scopus 로고
    • Automatic detection of epileptic seizures in EEG using discrete wavelet transform and approximate entropy
    • 10.1016/j.eswa.2007.12.065
    • Ocak, H., Automatic detection of epileptic seizures in EEG using discrete wavelet transform and approximate entropy. Expert Syst. Appl. 36:2027-2036, 2009.
    • (2009) Expert Syst. Appl. , vol.36 , pp. 2027-2036
    • Ocak, H.1
  • 8
    • 17844371713 scopus 로고    scopus 로고
    • Automatic recognition of alertness level from EEG by using neural network and wavelet coefficients
    • 10.1016/j.eswa.2004.12.027
    • Subasi, A., Automatic recognition of alertness level from EEG by using neural network and wavelet coefficients. Expert Syst. Appl. 28:701-711, 2005.
    • (2005) Expert Syst. Appl. , vol.28 , pp. 701-711
    • Subasi, A.1
  • 9
    • 22144480299 scopus 로고    scopus 로고
    • Epileptic seizure detection using dynamic wavelet network
    • 10.1016/j.eswa.2005.04.007
    • Subasi, A., Epileptic seizure detection using dynamic wavelet network. Expert Syst. Appl. 29:343-355, 2005.
    • (2005) Expert Syst. Appl. , vol.29 , pp. 343-355
    • Subasi, A.1
  • 10
    • 33646135537 scopus 로고    scopus 로고
    • Automatic detection of epileptic seizure using dynamic fuzzy neural networks
    • 10.1016/j.eswa.2005.09.027
    • Subasi, A., Automatic detection of epileptic seizure using dynamic fuzzy neural networks. Expert Syst. Appl. 31:320-328, 2006.
    • (2006) Expert Syst. Appl. , vol.31 , pp. 320-328
    • Subasi, A.1
  • 11
    • 33845386973 scopus 로고    scopus 로고
    • Application of adaptive neuro-fuzzy inference system for epileptic seizure detection using wavelet feature extraction
    • 10.1016/j.compbiomed.2005.12.003
    • Subasi, A., Application of adaptive neuro-fuzzy inference system for epileptic seizure detection using wavelet feature extraction. Comput. Biol. Med. 37(2):227-244, 2007.
    • (2007) Comput. Biol. Med. , vol.37 , Issue.2 , pp. 227-244
    • Subasi, A.1
  • 12
    • 58549111381 scopus 로고    scopus 로고
    • Combined neural network model employing wavelet coefficients for EEG signals classification
    • 10.1016/j.dsp.2008.07.004
    • Ubeyli, E. D., Combined neural network model employing wavelet coefficients for EEG signals classification. Digital Signal Process. 19:297-308, 2009.
    • (2009) Digital Signal Process. , vol.19 , pp. 297-308
    • Ubeyli, E.D.1
  • 13
    • 56349123198 scopus 로고    scopus 로고
    • Decision support systems for time-varying biomedical signals: EEG signals classification
    • 10.1016/j.eswa.2007.12.025
    • Ubeyli, E. D., Decision support systems for time-varying biomedical signals: EEG signals classification. Expert Syst. Appl. 36:2275-2284, 2009.
    • (2009) Expert Syst. Appl. , vol.36 , pp. 2275-2284
    • Ubeyli, E.D.1
  • 14
    • 16844376435 scopus 로고    scopus 로고
    • Comparison of STFT and wavelet transform methods in determining epileptic seizure activity in EEG signals for real-time application
    • 10.1016/j.compbiomed.2004.05.001
    • Kiymik, M. K., Guler, I., Dizibuyuk, A., and Akin, M., Comparison of STFT and wavelet transform methods in determining epileptic seizure activity in EEG signals for real-time application. Comput. Biol. Med. 35(7):603-616, 2005.
    • (2005) Comput. Biol. Med. , vol.35 , Issue.7 , pp. 603-616
    • Kiymik, M.K.1    Guler, I.2    Dizibuyuk, A.3    Akin, M.4
  • 15
    • 26944479675 scopus 로고    scopus 로고
    • Automatic seizure detection in EEG using logistic regression and artificial neural network
    • 10.1016/j.jneumeth.2005.04.009
    • Alkan, A., Koklukaya, E., and Subasi, A., Automatic seizure detection in EEG using logistic regression and artificial neural network. J. Neurosci. Meth. 148:167-176, 2005.
    • (2005) J. Neurosci. Meth. , vol.148 , pp. 167-176
    • Alkan, A.1    Koklukaya, E.2    Subasi, A.3
  • 16
    • 17744374301 scopus 로고    scopus 로고
    • Classification of EEG signals using neural network and logistic regression
    • 10.1016/j.cmpb.2004.10.009
    • Subasi, A., and Ercelebi, E., Classification of EEG signals using neural network and logistic regression. Comput. Meth. Programs Biomed. 78:87-99, 2005.
    • (2005) Comput. Meth. Programs Biomed. , vol.78 , pp. 87-99
    • Subasi, A.1    Ercelebi, E.2
  • 17
    • 77951208271 scopus 로고    scopus 로고
    • Epileptic EEG detection using the linear prediction error energy
    • 10.1016/j.eswa.2010.02.045
    • Altunay, S., Telatar, Z., and Erogul, O., Epileptic EEG detection using the linear prediction error energy. Expert Syst. Appl. 37(8):5661-5665, 2010.
    • (2010) Expert Syst. Appl. , vol.37 , Issue.8 , pp. 5661-5665
    • Altunay, S.1    Telatar, Z.2    Erogul, O.3
  • 18
    • 33751396389 scopus 로고    scopus 로고
    • EEG signal classification using wavelet feature extraction and a mixture of expert model
    • 10.1016/j.eswa.2006.02.005
    • Subasi, A., EEG signal classification using wavelet feature extraction and a mixture of expert model. Expert Syst. Appl. 32:1084-1093, 2007.
    • (2007) Expert Syst. Appl. , vol.32 , pp. 1084-1093
    • Subasi, A.1
  • 19
    • 51349117677 scopus 로고    scopus 로고
    • A radial basis function neural network model for classification of epilepsy using EEG signals
    • 10.1007/s10916-008-9145-9
    • Aslan, K., Bozdemir, H., Sahin, S., Ogulata, S. N., and Erol, R., A radial basis function neural network model for classification of epilepsy using EEG signals. J. Med. Syst. 32:403-408, 2008.
    • (2008) J. Med. Syst. , vol.32 , pp. 403-408
    • Aslan, K.1    Bozdemir, H.2    Sahin, S.3    Ogulata, S.N.4    Erol, R.5
  • 20
    • 24044474732 scopus 로고    scopus 로고
    • Artificial neural network based epileptic detection using time-domain and frequency-domain features
    • 10.1007/s10916-005-6133-1
    • Srinivasan, V., Eswaran, C., and Sriraam, N., Artificial neural network based epileptic detection using time-domain and frequency-domain features. J. Med. Syst. 29(6):647-660, 2005.
    • (2005) J. Med. Syst. , vol.29 , Issue.6 , pp. 647-660
    • Srinivasan, V.1    Eswaran, C.2    Sriraam, N.3
  • 21
    • 0030219951 scopus 로고    scopus 로고
    • Detection of seizure activity in EEG by an artificial neural network: A preliminary study
    • 10.1006/cbmr.1996.0022
    • Pradhan, N., Sadasivan, P. K., and Arunodaya, G. R., Detection of seizure activity in EEG by an artificial neural network: A preliminary study. Comput. Biomed. Res. 29:303-313, 1996.
    • (1996) Comput. Biomed. Res. , vol.29 , pp. 303-313
    • Pradhan, N.1    Sadasivan, P.K.2    Arunodaya, G.R.3
  • 22
    • 37049007663 scopus 로고    scopus 로고
    • Analysis of EEG signals by combining eigenvector methods and multiclass support vector machines
    • 10.1016/j.compbiomed.2007.06.002
    • Ubeyli, E. D., Analysis of EEG signals by combining eigenvector methods and multiclass support vector machines. Comput. Biol. Med. 38(1):14-22, 2008.
    • (2008) Comput. Biol. Med. , vol.38 , Issue.1 , pp. 14-22
    • Ubeyli, E.D.1
  • 23
    • 6344246400 scopus 로고    scopus 로고
    • Neural networks with periodogram and autoregressive spectral analysis methods in detection of epileptic seizure
    • 10.1023/B:JOMS.0000044954.85566.a9
    • Kiymik, M. K., Subasi, A., and Ozcalik, H. R., Neural networks with periodogram and autoregressive spectral analysis methods in detection of epileptic seizure. J. Med. Syst. 28(6):511-522, 2004.
    • (2004) J. Med. Syst. , vol.28 , Issue.6 , pp. 511-522
    • Kiymik, M.K.1    Subasi, A.2    Ozcalik, H.R.3
  • 24
    • 70349410385 scopus 로고    scopus 로고
    • Epileptic seizure detection in EEGs using time-frequency analysis
    • 10.1109/TITB.2009.2017939
    • Tzallas, A. T., Tsipouras, M. G., and Fotiadis, D. I., Epileptic seizure detection in EEGs using time-frequency analysis. IEEE Trans. Inf. Technol. Biomed. 13(5):703-710, 2009.
    • (2009) IEEE Trans. Inf. Technol. Biomed. , vol.13 , Issue.5 , pp. 703-710
    • Tzallas, A.T.1    Tsipouras, M.G.2    Fotiadis, D.I.3
  • 25
    • 22144461419 scopus 로고    scopus 로고
    • Automated system for detection of epileptiform patterns in EEG by using a modified RBFN classifier
    • 10.1016/j.eswa.2005.04.040
    • Acir, N., Automated system for detection of epileptiform patterns in EEG by using a modified RBFN classifier. Expert Syst. Appl. 29(2):455-462, 2005.
    • (2005) Expert Syst. Appl. , vol.29 , Issue.2 , pp. 455-462
    • Acir, N.1
  • 26
    • 38349123053 scopus 로고    scopus 로고
    • Principal component analysis-enhanced cosine radial basis function neural network for robust epilepsy and seizure detection
    • 10.1109/TBME.2007.905490
    • Ghosh-Dastidar, S., Adeli, H., and Dadmehr, N., Principal component analysis-enhanced cosine radial basis function neural network for robust epilepsy and seizure detection. IEEE Trans. Biomed. Eng. 55(2):512-518, 2008.
    • (2008) IEEE Trans. Biomed. Eng. , vol.55 , Issue.2 , pp. 512-518
    • Ghosh-Dastidar, S.1    Adeli, H.2    Dadmehr, N.3
  • 27
    • 78650820691 scopus 로고    scopus 로고
    • Automated detection of epileptic EEG using approximate entropy in Elman networks
    • Vukkadala, S., Vijayalakshmi, S., and Vijayapriya, S., Automated detection of epileptic EEG using approximate entropy in Elman networks. Int. J. Recent Trends Eng. 1(1):307-312, 2009.
    • (2009) Int. J. Recent Trends Eng. , vol.1 , Issue.1 , pp. 307-312
    • Vukkadala, S.1    Vijayalakshmi, S.2    Vijayapriya, S.3
  • 28
    • 33745235087 scopus 로고    scopus 로고
    • One-class novelty detection for seizure analysis from intracranial EEG
    • 2274396 1222.92052
    • Gardner, A. B., Krieger, A. M., Vachtsevanos, G., and Litt, B., One-class novelty detection for seizure analysis from intracranial EEG. J. Mach. Learn. Res. 7:1025-1044, 2006.
    • (2006) J. Mach. Learn. Res. , vol.7 , pp. 1025-1044
    • Gardner, A.B.1    Krieger, A.M.2    Vachtsevanos, G.3    Litt, B.4
  • 29
    • 0035682573 scopus 로고    scopus 로고
    • Indications of nonlinear deterministic and finite-dimensional structures in time series of brain electrical activity: Dependence on recording region and brain state
    • 10.1103/PhysRevE.64.061907
    • Andrzejak, R. G., Lehnertz, K., Mormann, F., Rieke, C., David, P., and Elger, C. E., Indications of nonlinear deterministic and finite-dimensional structures in time series of brain electrical activity: Dependence on recording region and brain state. Phys. Rev. E 64(6):061907, 2001.
    • (2001) Phys. Rev. e , vol.64 , Issue.6 , pp. 061907
    • Andrzejak, R.G.1    Lehnertz, K.2    Mormann, F.3    Rieke, C.4    David, P.5    Elger, C.E.6
  • 30
    • 0345306663 scopus 로고    scopus 로고
    • Implications of the Dirichlet assumption for discretization of continuous variables in Naive Bayesian classifiers
    • 1089.68096 10.1023/A:1026367023636
    • Hsu, C. N., Huang, H. J., and Wong, T. T., Implications of the Dirichlet assumption for discretization of continuous variables in Naive Bayesian classifiers. Mach. Learn. 53(3):235-263, 2003.
    • (2003) Mach. Learn. , vol.53 , Issue.3 , pp. 235-263
    • Hsu, C.N.1    Huang, H.J.2    Wong, T.T.3
  • 32
    • 0036565008 scopus 로고    scopus 로고
    • A modified Chi2 algorithm for discretization
    • 10.1109/TKDE.2002.1000349
    • Tay, E. H., and Shen, L., A modified Chi2 algorithm for discretization. IEEE Trans. Knowl. Data Eng. 14(3):666-670, 2002.
    • (2002) IEEE Trans. Knowl. Data Eng. , vol.14 , Issue.3 , pp. 666-670
    • Tay, E.H.1    Shen, L.2
  • 33
    • 0036463183 scopus 로고    scopus 로고
    • An unsupervised discretization algorithm based on mixture probabilistic model
    • Gang, L., and Tong, F., An unsupervised discretization algorithm based on mixture probabilistic model. Chin. J. Comput. 25(2):158-164, 2002.
    • (2002) Chin. J. Comput. , vol.25 , Issue.2 , pp. 158-164
    • Gang, L.1    Tong, F.2
  • 34
    • 34047243825 scopus 로고    scopus 로고
    • A Hellinger-based discretization method for numeric attributes in classification learning
    • 10.1016/j.knosys.2006.06.005
    • Lee, C. H., A Hellinger-based discretization method for numeric attributes in classification learning. Knowl.-Based Syst. 20(4):419-425, 2007.
    • (2007) Knowl.-Based Syst. , vol.20 , Issue.4 , pp. 419-425
    • Lee, C.H.1
  • 36
    • 0033881469 scopus 로고    scopus 로고
    • Entropy and MDL discretization of continuous variables for Bayesian belief networks
    • 10.1002/(SICI)1098-111X(200001)15:1<61: AID-INT4>3.0.CO;2-O
    • Clarke, E. J., and Braton, B. A., Entropy and MDL discretization of continuous variables for Bayesian belief networks. Int. J. Intell. Syst. 15:61-92, 2000.
    • (2000) Int. J. Intell. Syst. , vol.15 , pp. 61-92
    • Clarke, E.J.1    Braton, B.A.2
  • 37
    • 36248944428 scopus 로고    scopus 로고
    • Clustering based algorithm for best discretizing continuous valued attributes
    • Xi, J., and Ouyang, W. M., Clustering based algorithm for best discretizing continuous valued attributes. Mini-Micro Syst. 21(10):1025-1027, 2000.
    • (2000) MiniMicro Syst. , vol.21 , Issue.10 , pp. 1025-1027
    • Xi, J.1    Ouyang, W.M.2
  • 38
    • 0003487601 scopus 로고    scopus 로고
    • Oxford University Press, Indian edition, Fifth impression, ISBN-10:0-19-566799-9
    • Bishop, C. M., Neural networks for pattern recognition, Oxford University Press, Indian edition, Fifth impression, ISBN-10:0-19-566799-9, 2007.
    • (2007) Neural Networks for Pattern Recognition
    • Bishop, C.M.1
  • 40
    • 56549122554 scopus 로고    scopus 로고
    • Analysis of EEG signals by implementing eigenvector methods/recurrent neural networks
    • 10.1016/j.dsp.2008.07.007
    • Ubeyli, E. D., Analysis of EEG signals by implementing eigenvector methods/recurrent neural networks. Digital Signal Process. 19:134-143, 2009.
    • (2009) Digital Signal Process. , vol.19 , pp. 134-143
    • Ubeyli, E.D.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.