메뉴 건너뛰기




Volumn 15, Issue 1, 2000, Pages 61-92

Entropy and MDL discretization of continuous variables for Bayesian belief networks

Author keywords

[No Author keywords available]

Indexed keywords

ALGORITHMS; EPIDEMIOLOGY;

EID: 0033881469     PISSN: 08848173     EISSN: None     Source Type: Journal    
DOI: 10.1002/(SICI)1098-111X(200001)15:1<61::AID-INT4>3.0.CO;2-O     Document Type: Article
Times cited : (69)

References (23)
  • 3
    • 0026492738 scopus 로고
    • Obesity and cardiovascular disease risk factors in black and white girls: The NHLBI growth and health study
    • National Heart, Lung, and Blood Institute Growth and Health Study Research Group, Obesity and cardiovascular disease risk factors in black and white girls: The NHLBI growth and health study. Amer J Public Health 1992;82:1613-1620.
    • (1992) Amer J Public Health , vol.82 , pp. 1613-1620
  • 4
    • 34249832377 scopus 로고
    • A Bayesian method for the induction of probabilistic networks from data
    • Cooper G, Herskovits E. A Bayesian method for the induction of probabilistic networks from data. Machine Learning 1992;9:309-347.
    • (1992) Machine Learning , vol.9 , pp. 309-347
    • Cooper, G.1    Herskovits, E.2
  • 5
    • 0027173888 scopus 로고
    • Dietary Intervention Study in Children (DISC) with elevated low-density-lipoprotein cholesterol: Design and baseline characteristics
    • Dietary Intervention Study in Children Collborative Research Group, Dietary intervention study in children (DISC) with elevated low-density-lipoprotein cholesterol: Design and baseline characteristics. Ann Epidemiology 1993;3(4):393-402.
    • (1993) Ann Epidemiology , vol.3 , Issue.4 , pp. 393-402
  • 6
    • 0002593344 scopus 로고
    • Multi-interval discretization of continuous-valued attributes for classification learning
    • San Mateo, CA: Morgan Kaufmann
    • Fayyad U, Irani K. Multi-interval discretization of continuous-valued attributes for classification learning. Proc 13th International Joint Conference on Artificial Intelligence. Vol. 2, San Mateo, CA: Morgan Kaufmann; 1993. p 1022-1027.
    • (1993) Proc 13th International Joint Conference on Artificial Intelligence , vol.2 , pp. 1022-1027
    • Fayyad, U.1    Irani, K.2
  • 7
    • 84952989555 scopus 로고
    • Compression-based discretization of continuous variables
    • Prieditis A, Russell S, editors. San Francisco, CA: Morgan Kaufmann
    • Pfahringer B. Compression-based discretization of continuous variables. Proc 12th International Conference on Machine Learning. Prieditis A, Russell S, editors. San Francisco, CA: Morgan Kaufmann; 1995. p 456-463.
    • (1995) Proc 12th International Conference on Machine Learning , pp. 456-463
    • Pfahringer, B.1
  • 9
    • 85139983802 scopus 로고
    • Supervised and unsupervised discretization of continuous features
    • Prieditis A, Russel S, editors. San Francisco, CA: Morgan Kaufmann
    • Dougherty J, Kohavi R, Sahami M. Supervised and unsupervised discretization of continuous features. Proc 12th International Conference on Machine Learning. Prieditis A, Russel S, editors. San Francisco, CA: Morgan Kaufmann; 1995. p 194-202.
    • (1995) Proc 12th International Conference on Machine Learning , pp. 194-202
    • Dougherty, J.1    Kohavi, R.2    Sahami, M.3
  • 10
    • 0031224390 scopus 로고    scopus 로고
    • Use of contextual information for feature ranking and discretization
    • Hong S. Use of contextual information for feature ranking and discretization. IEEE Trans Knowledge Data Eng 1997;9(5):718-730.
    • (1997) IEEE Trans Knowledge Data Eng , vol.9 , Issue.5 , pp. 718-730
    • Hong, S.1
  • 11
    • 85162801823 scopus 로고
    • An iterative improvement approach for the discretization of numeric attributes in Bayesian classifiers
    • Fayyad U, Uthurusamy R, editors. Menlo Park, CA: AAAI Press
    • Pazzani M. An iterative improvement approach for the discretization of numeric attributes in Bayesian classifiers. Proc 1st International Conference on Knowledge Discovery and Data Mining. Fayyad U, Uthurusamy R, editors. Menlo Park, CA: AAAI Press; 1995. p 228-233.
    • (1995) Proc 1st International Conference on Knowledge Discovery and Data Mining , pp. 228-233
    • Pazzani, M.1
  • 12
    • 0001156075 scopus 로고    scopus 로고
    • Discretizing continuous attributes while learning Bayesian networks
    • Saitta L, editor. San Francisco, CA: Morgan Kaufmann
    • Friedman N, Goldszmidt M. Discretizing continuous attributes while learning Bayesian networks. Proc 13th International Conference on Machine Learning. Saitta L, editor. San Francisco, CA: Morgan Kaufmann; 1996. p 157-165.
    • (1996) Proc 13th International Conference on Machine Learning , pp. 157-165
    • Friedman, N.1    Goldszmidt, M.2
  • 14
    • 0002594891 scopus 로고
    • Learning Bayesian networks: A unification for discrete and Gaussian domains
    • Besnard P, Hanks S, editors. San Francisco, CA: Morgan Kaufmann
    • Heckerman D, Geiger D. Learning Bayesian networks: A unification for discrete and Gaussian domains. Proc 11th Conference in Uncertainty in Artificial Intelligence. Besnard P, Hanks S, editors. San Francisco, CA: Morgan Kaufmann, 1995. p 274-284.
    • (1995) Proc 11th Conference in Uncertainty in Artificial Intelligence , pp. 274-284
    • Heckerman, D.1    Geiger, D.2
  • 15
    • 84915827212 scopus 로고
    • Learning Bayesian networks with discrete variables from data
    • Fayyad U, Uthurusamy R, editors. Menlo Park, CA: AAAI Press
    • Spirtes P, Meek C. Learning Bayesian networks with discrete variables from data. Proc 1st International Conference on Knowledge Discovery and Data Mining. Fayyad U, Uthurusamy R, editors. Menlo Park, CA: AAAI Press; 1995. p 294-299.
    • (1995) Proc 1st International Conference on Knowledge Discovery and Data Mining , pp. 294-299
    • Spirtes, P.1    Meek, C.2
  • 16
    • 0028482006 scopus 로고
    • Learning Bayesian belief networks: An approach based on the MDL principle
    • Lam W, Bacchus F. Learning Bayesian belief networks: An approach based on the MDL principle. Comput Intell 1994;10(3):269-293.
    • (1994) Comput Intell , vol.10 , Issue.3 , pp. 269-293
    • Lam, W.1    Bacchus, F.2
  • 17
    • 0001916227 scopus 로고
    • Properties of Bayesian belief network learning algorithms
    • deMantaras R, Poole D, editors. San Francisco, CA: Morgan Kaufmann
    • Bouckaert R. Properties of Bayesian belief network learning algorithms. Proc 10th Conference in Uncertainty in Artificial Intelligence. deMantaras R, Poole D, editors. San Francisco, CA: Morgan Kaufmann; 1994. p 102-109.
    • (1994) Proc 10th Conference in Uncertainty in Artificial Intelligence , pp. 102-109
    • Bouckaert, R.1
  • 18
    • 24444480846 scopus 로고    scopus 로고
    • A SAS macro for exploratory analysis using a Bayesian belief network
    • Clarke E, Barton B. A SAS macro for exploratory analysis using a Bayesian belief network. Contr Clinical Trials 1996;17:2S, 110S.
    • (1996) Contr Clinical Trials , vol.17
    • Clarke, E.1    Barton, B.2
  • 19
    • 0000318553 scopus 로고
    • Stochastic complexity and modeling
    • Rissanen J. Stochastic complexity and modeling. Ann Statist 1986;14(3):1080-1100.
    • (1986) Ann Statist , vol.14 , Issue.3 , pp. 1080-1100
    • Rissanen, J.1
  • 20
    • 0000208683 scopus 로고
    • Stochastic complexity
    • Rissanen J. Stochastic complexity. J Roy Statist Soc B 1987;49(3):223-239; 252-265.
    • (1987) J Roy Statist Soc B , vol.49 , Issue.3 , pp. 223-239
    • Rissanen, J.1
  • 22
    • 84933530882 scopus 로고
    • Approximating discrete probability distributions with dependence trees
    • Chow C, Liu C. Approximating discrete probability distributions with dependence trees. IEEE Trans Inform Theory 1968;14(3):462-467.
    • (1968) IEEE Trans Inform Theory , vol.14 , Issue.3 , pp. 462-467
    • Chow, C.1    Liu, C.2
  • 23
    • 85017343247 scopus 로고
    • Probabilistic network construction using the minimum description length principle
    • Clarke M, Kruse R, Moral S, editors. New York: Springer-Verlag
    • Bouckaert R. Probabilistic network construction using the minimum description length principle. Proc European Conference on Symbolic and Quantitative Approaches to Reasoning and Uncertainty. Clarke M, Kruse R, Moral S, editors. New York: Springer-Verlag; 1993. p 41-48.
    • (1993) Proc European Conference on Symbolic and Quantitative Approaches to Reasoning and Uncertainty , pp. 41-48
    • Bouckaert, R.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.