-
1
-
-
0014325451
-
The origin and kinetics of mononuclear phagocytes
-
van Furth R, Cohn ZA,. The origin and kinetics of mononuclear phagocytes. J. Exp. Med. 1968; 128: 415-435.
-
(1968)
J. Exp. Med.
, vol.128
, pp. 415-435
-
-
Van Furth, R.1
Cohn, Z.A.2
-
2
-
-
30044434256
-
The mononuclear phagocyte system
-
Hume DA,. The mononuclear phagocyte system. Curr. Opin. Immunol. 2006; 18: 49-53.
-
(2006)
Curr. Opin. Immunol.
, vol.18
, pp. 49-53
-
-
Hume, D.A.1
-
3
-
-
73849152201
-
Monocytes: Subsets, origins, fates and functions
-
Yona S, Jung S,. Monocytes: Subsets, origins, fates and functions. Curr. Opin. Hematol. 2010; 17: 53-59.
-
(2010)
Curr. Opin. Hematol.
, vol.17
, pp. 53-59
-
-
Yona, S.1
Jung, S.2
-
4
-
-
0024450489
-
Identification and characterization of a novel monocyte subpopulation in human peripheral blood
-
Passlick B, Flieger D, Ziegler-Heitbrock H,. Identification and characterization of a novel monocyte subpopulation in human peripheral blood. Blood 1989; 74: 2527-2534.
-
(1989)
Blood
, vol.74
, pp. 2527-2534
-
-
Passlick, B.1
Flieger, D.2
Ziegler-Heitbrock, H.3
-
5
-
-
0035139169
-
Identification of a novel dendritic cell-like subset of CD64+CD16+ blood monocytes
-
Grage-Griebenow E, Zawatzky R, Kahlert H, Brade L, Flad H-D, Ernst M,. Identification of a novel dendritic cell-like subset of CD64+CD16+ blood monocytes. Eur. J. Immunol. 2001; 31: 48-56.
-
(2001)
Eur. J. Immunol.
, vol.31
, pp. 48-56
-
-
Grage-Griebenow, E.1
Zawatzky, R.2
Kahlert, H.3
Brade, L.4
Flad, H.-D.5
Ernst, M.6
-
6
-
-
34547730844
-
Monocyte subpopulations and their differentiation patterns during infection
-
Strauss-Ayali D, Conrad SM, Mosser DM,. Monocyte subpopulations and their differentiation patterns during infection. J. Leukoc. Biol. 2007; 82: 244-252.
-
(2007)
J. Leukoc. Biol.
, vol.82
, pp. 244-252
-
-
Strauss-Ayali, D.1
Conrad, S.M.2
Mosser, D.M.3
-
7
-
-
28344437694
-
Selective expansion of CD16highCCR2- subpopulation of circulating monocytes with preferential production of haem oxygenase (HO)-1 in response to acute inflammation
-
Mizuno K, Toma T, Tsukiji H, et al. Selective expansion of CD16highCCR2- subpopulation of circulating monocytes with preferential production of haem oxygenase (HO)-1 in response to acute inflammation. Clin. Exp. Immunol. 2005; 142: 461-470.
-
(2005)
Clin. Exp. Immunol.
, vol.142
, pp. 461-470
-
-
Mizuno, K.1
Toma, T.2
Tsukiji, H.3
-
8
-
-
0031817412
-
Expansion of CD14+CD16+ monocytes in critically ill cardiac surgery patients
-
Fingerle-Rowson G, Auers J, Kreuzer E, Fraunberger P, Blumenstein M, Ziegler-Heitbrock LH,. Expansion of CD14+CD16+ monocytes in critically ill cardiac surgery patients. Inflammation 1998; 22: 367-379.
-
(1998)
Inflammation
, vol.22
, pp. 367-379
-
-
Fingerle-Rowson, G.1
Auers, J.2
Kreuzer, E.3
Fraunberger, P.4
Blumenstein, M.5
Ziegler-Heitbrock, L.H.6
-
9
-
-
0036113899
-
The CD14+CD16+ monocytes in erysipelas are expanded and show reduced cytokine production
-
Horelt A, Belge KU, Steppich B, Prinz J, Ziegler-Heitbrock L,. The CD14+CD16+ monocytes in erysipelas are expanded and show reduced cytokine production. Eur. J. Immunol. 2002; 32: 1319-1327.
-
(2002)
Eur. J. Immunol.
, vol.32
, pp. 1319-1327
-
-
Horelt, A.1
Belge, K.U.2
Steppich, B.3
Prinz, J.4
Ziegler-Heitbrock, L.5
-
10
-
-
38149044069
-
Peripheral blood CD14high CD16+ monocytes are main producers of IL-10
-
Skrzeczynska-Moncznik J, Bzowska M, Loseke S, Grage-Griebenow E, Zembala M, Pryjma J,. Peripheral blood CD14high CD16+ monocytes are main producers of IL-10. Scand. J. Immunol. 2008; 67: 152-159.
-
(2008)
Scand. J. Immunol.
, vol.67
, pp. 152-159
-
-
Skrzeczynska-Moncznik, J.1
Bzowska, M.2
Loseke, S.3
Grage-Griebenow, E.4
Zembala, M.5
Pryjma, J.6
-
11
-
-
77957020717
-
Human CD14dim monocytes patrol and sense nucleic acids and viruses via TLR7 and TLR8 receptors
-
Cros J, Cagnard N, Woollard K, et al. Human CD14dim monocytes patrol and sense nucleic acids and viruses via TLR7 and TLR8 receptors. Immunity 2010; 33: 375-386.
-
(2010)
Immunity
, vol.33
, pp. 375-386
-
-
Cros, J.1
Cagnard, N.2
Woollard, K.3
-
12
-
-
33748792548
-
Single-cell analysis divides bovine monocyte-derived dendritic cells into subsets expressing either high or low levels of inducible nitric oxide synthase
-
Mirkovitch J, Konig A, Sauter KS, et al. Single-cell analysis divides bovine monocyte-derived dendritic cells into subsets expressing either high or low levels of inducible nitric oxide synthase. Vet. Immunol. Immunopathol. 2006; 114: 1-14.
-
(2006)
Vet. Immunol. Immunopathol.
, vol.114
, pp. 1-14
-
-
Mirkovitch, J.1
Konig, A.2
Sauter, K.S.3
-
13
-
-
11144275730
-
Phenotypic and functional heterogeneity of porcine blood monocytes and its relation with maturation
-
Chamorro S, Revilla C, Alvarez B, Alonso F, Ezquerra A, Dominguez J,. Phenotypic and functional heterogeneity of porcine blood monocytes and its relation with maturation. Immunology 2005; 114: 63-71.
-
(2005)
Immunology
, vol.114
, pp. 63-71
-
-
Chamorro, S.1
Revilla, C.2
Alvarez, B.3
Alonso, F.4
Ezquerra, A.5
Dominguez, J.6
-
14
-
-
0034038824
-
Phenotypic characterization of monocyte subpopulations in the pig
-
Chamorro S, Revilla C, Alvarez B, Lopez-Fuertes L, Ezquerra A, Dominguez J,. Phenotypic characterization of monocyte subpopulations in the pig. Immunobiology 2000; 202: 82-93.
-
(2000)
Immunobiology
, vol.202
, pp. 82-93
-
-
Chamorro, S.1
Revilla, C.2
Alvarez, B.3
Lopez-Fuertes, L.4
Ezquerra, A.5
Dominguez, J.6
-
15
-
-
0029028423
-
Identification of two subpopulations of rat monocytes expressing disparate molecular forms and quantities of CD43
-
Ahuja V, Miller SE, Howell DN,. Identification of two subpopulations of rat monocytes expressing disparate molecular forms and quantities of CD43. Cell. Immunol. 1995; 163: 59-69.
-
(1995)
Cell. Immunol.
, vol.163
, pp. 59-69
-
-
Ahuja, V.1
Miller, S.E.2
Howell, D.N.3
-
16
-
-
0037963473
-
Blood monocytes consist of two principal subsets with distinct migratory properties
-
Geissmann F, Jung S, Littman DR,. Blood monocytes consist of two principal subsets with distinct migratory properties. Immunity 2003; 19: 71-82.
-
(2003)
Immunity
, vol.19
, pp. 71-82
-
-
Geissmann, F.1
Jung, S.2
Littman, D.R.3
-
17
-
-
1642406217
-
Subpopulations of mouse blood monocytes differ in maturation stage and inflammatory response
-
Sunderkötter C, Nikolic T, Dillon MJ, et al. Subpopulations of mouse blood monocytes differ in maturation stage and inflammatory response. J. Immunol. 2004; 172: 4410-4417.
-
(2004)
J. Immunol.
, vol.172
, pp. 4410-4417
-
-
Sunderkötter, C.1
Nikolic, T.2
Dillon, M.J.3
-
18
-
-
0033844802
-
Differential chemokine receptor expression and function in human monocyte subpopulations
-
Weber C, Belge KU, von Hundelshausen P, et al. Differential chemokine receptor expression and function in human monocyte subpopulations. J. Leukoc. Biol. 2000; 67: 699-704.
-
(2000)
J. Leukoc. Biol.
, vol.67
, pp. 699-704
-
-
Weber, C.1
Belge, K.U.2
Von Hundelshausen, P.3
-
19
-
-
0037867044
-
Fractalkine preferentially mediates arrest and migration of CD16+ monocytes
-
Ancuta P, Rao R, Moses A, et al. Fractalkine preferentially mediates arrest and migration of CD16+ monocytes. J. Exp. Med. 2003; 197: 1701-1707.
-
(2003)
J. Exp. Med.
, vol.197
, pp. 1701-1707
-
-
Ancuta, P.1
Rao, R.2
Moses, A.3
-
20
-
-
36549033197
-
The healing myocardium sequentially mobilizes two monocyte subsets with divergent and complementary functions
-
Nahrendorf M, Swirski FK, Aikawa E, et al. The healing myocardium sequentially mobilizes two monocyte subsets with divergent and complementary functions. J. Exp. Med. 2007; 204: 3037-3047.
-
(2007)
J. Exp. Med.
, vol.204
, pp. 3037-3047
-
-
Nahrendorf, M.1
Swirski, F.K.2
Aikawa, E.3
-
21
-
-
34248997759
-
Inflammatory monocytes recruited after skeletal muscle injury switch into antiinflammatory macrophages to support myogenesis
-
Arnold L, Henry A, Poron F, et al. Inflammatory monocytes recruited after skeletal muscle injury switch into antiinflammatory macrophages to support myogenesis. J. Exp. Med. 2007; 204: 1057-1069.
-
(2007)
J. Exp. Med.
, vol.204
, pp. 1057-1069
-
-
Arnold, L.1
Henry, A.2
Poron, F.3
-
22
-
-
34547728312
-
Monitoring of blood vessels and tissues by a population of monocytes with patrolling behavior
-
Auffray C, Fogg D, Garfa M, et al. Monitoring of blood vessels and tissues by a population of monocytes with patrolling behavior. Science 2007; 317: 666-670.
-
(2007)
Science
, vol.317
, pp. 666-670
-
-
Auffray, C.1
Fogg, D.2
Garfa, M.3
-
23
-
-
33846414364
-
Distinct differentiation potential of blood monocyte subsets in the lung
-
Landsman L, Varol C, Jung S,. Distinct differentiation potential of blood monocyte subsets in the lung. J. Immunol. 2007; 178: 2000-2007.
-
(2007)
J. Immunol.
, vol.178
, pp. 2000-2007
-
-
Landsman, L.1
Varol, C.2
Jung, S.3
-
24
-
-
9244240285
-
Role of CCR8 and other chemokine pathways in the migration of monocyte-derived dendritic cells to lymph nodes
-
Qu C, Edwards EW, Tacke F, et al. Role of CCR8 and other chemokine pathways in the migration of monocyte-derived dendritic cells to lymph nodes. J. Exp. Med. 2004; 200: 1231-1241.
-
(2004)
J. Exp. Med.
, vol.200
, pp. 1231-1241
-
-
Qu, C.1
Edwards, E.W.2
Tacke, F.3
-
25
-
-
55849103960
-
Macrophage diversity in renal injury and repair
-
Ricardo SD, Goor H, Eddy AA,. Macrophage diversity in renal injury and repair. J. Clin. Invest. 2008; 118: 3522-3530.
-
(2008)
J. Clin. Invest.
, vol.118
, pp. 3522-3530
-
-
Ricardo, S.D.1
Goor, H.2
Eddy, A.A.3
-
26
-
-
38049042218
-
Macrophage involvement in the kidney repair phase after ischaemia/reperfusion injury
-
Vinuesa E, Hotter G, Jung M, Herrero-Fresneda I, Torras J, Sola A,. Macrophage involvement in the kidney repair phase after ischaemia/reperfusion injury. J. Pathol. 2008; 214: 104-113.
-
(2008)
J. Pathol.
, vol.214
, pp. 104-113
-
-
Vinuesa, E.1
Hotter, G.2
Jung, M.3
Herrero-Fresneda, I.4
Torras, J.5
Sola, A.6
-
27
-
-
77749246063
-
Macrophage Wnt7b is critical for kidney repair and regeneration
-
Lin SL, Li B, Rao S, et al. Macrophage Wnt7b is critical for kidney repair and regeneration. Proc. Natl Acad. Sci. U.S.A. 2010; 107: 4194-4199.
-
(2010)
Proc. Natl Acad. Sci. U.S.A.
, vol.107
, pp. 4194-4199
-
-
Lin, S.L.1
Li, B.2
Rao, S.3
-
28
-
-
80052836313
-
Colony-stimulating factor-1 promotes kidney growth and repair via alteration of macrophage responses
-
Alikhan MA, Jones CV, Williams TM, et al. Colony-stimulating factor-1 promotes kidney growth and repair via alteration of macrophage responses. Am. J. Pathol. 2011; 179: 1243-1256.
-
(2011)
Am. J. Pathol.
, vol.179
, pp. 1243-1256
-
-
Alikhan, M.A.1
Jones, C.V.2
Williams, T.M.3
-
29
-
-
11844263878
-
Depletion of alveolar macrophages by clodronate-liposomes aggravates ischemia-reperfusion injury of the lung
-
Nakamura T, Abu-Dahab R, Menger MD, et al. Depletion of alveolar macrophages by clodronate-liposomes aggravates ischemia-reperfusion injury of the lung. J. Heart Lung Transplant. 2005; 24: 38-45.
-
(2005)
J. Heart Lung Transplant.
, vol.24
, pp. 38-45
-
-
Nakamura, T.1
Abu-Dahab, R.2
Menger, M.D.3
-
30
-
-
10144228401
-
CSF-1 deficiency in mice results in abnormal brain development
-
Michaelson M, Bieri P, Mehler M, et al. CSF-1 deficiency in mice results in abnormal brain development. Development 1996; 122: 2661-2672.
-
(1996)
Development
, vol.122
, pp. 2661-2672
-
-
Michaelson, M.1
Bieri, P.2
Mehler, M.3
-
31
-
-
40449127195
-
Chemokine receptor CX3CR1 mediates skin wound healing by promoting macrophage and fibroblast accumulation and function
-
Ishida Y, Gao JL, Murphy PM,. Chemokine receptor CX3CR1 mediates skin wound healing by promoting macrophage and fibroblast accumulation and function. J. Immunol. 2008; 180: 569-579.
-
(2008)
J. Immunol.
, vol.180
, pp. 569-579
-
-
Ishida, Y.1
Gao, J.L.2
Murphy, P.M.3
-
32
-
-
33746766314
-
Activated macrophages are essential in a murine model for T cell-mediated chronic psoriasiform skin inflammation
-
Wang H, Peters T, Kess D, et al. Activated macrophages are essential in a murine model for T cell-mediated chronic psoriasiform skin inflammation. J. Clin. Invest. 2006; 116: 2105-2114.
-
(2006)
J. Clin. Invest.
, vol.116
, pp. 2105-2114
-
-
Wang, H.1
Peters, T.2
Kess, D.3
-
33
-
-
13744255589
-
Selective depletion of macrophages reveals distinct, opposing roles during liver injury and repair
-
Duffield JS, Forbes SJ, Constandinou CM, et al. Selective depletion of macrophages reveals distinct, opposing roles during liver injury and repair. J. Clin. Invest. 2005; 115: 56-65.
-
(2005)
J. Clin. Invest.
, vol.115
, pp. 56-65
-
-
Duffield, J.S.1
Forbes, S.J.2
Constandinou, C.M.3
-
34
-
-
33747154155
-
Ex vivo activated human macrophages improve healing, remodeling, and function of the infarcted heart
-
Leor J, Rozen L, Zuloff-Shani A, et al. Ex vivo activated human macrophages improve healing, remodeling, and function of the infarcted heart. Circulation 2006; 114: I-94-100.
-
(2006)
Circulation
, vol.114
-
-
Leor, J.1
Rozen, L.2
Zuloff-Shani, A.3
-
35
-
-
11844279745
-
Activated macrophages are an adaptive element of the colonic epithelial progenitor niche necessary for regenerative responses to injury
-
Pull SL, Doherty JM, Mills JC, Gordon JI, Stappenbeck TS,. Activated macrophages are an adaptive element of the colonic epithelial progenitor niche necessary for regenerative responses to injury. Proc. Natl Acad. Sci. U.S.A. 2005; 102: 99-104.
-
(2005)
Proc. Natl Acad. Sci. U.S.A.
, vol.102
, pp. 99-104
-
-
Pull, S.L.1
Doherty, J.M.2
Mills, J.C.3
Gordon, J.I.4
Stappenbeck, T.S.5
-
36
-
-
40449112315
-
Urokinase-type plasminogen activator plays essential roles in macrophage chemotaxis and skeletal muscle regeneration
-
Bryer SC, Fantuzzi G, Van Rooijen N, Koh TJ,. Urokinase-type plasminogen activator plays essential roles in macrophage chemotaxis and skeletal muscle regeneration. J. Immunol. 2008; 180: 1179-1188.
-
(2008)
J. Immunol.
, vol.180
, pp. 1179-1188
-
-
Bryer, S.C.1
Fantuzzi, G.2
Van Rooijen, N.3
Koh, T.J.4
-
37
-
-
79251585227
-
Macrophages recruited via CCR2 produce insulin-like growth factor-1 to repair acute skeletal muscle injury
-
Lu H, Huang D, Saederup N, Charo IF, Ransohoff RM, Zhou L,. Macrophages recruited via CCR2 produce insulin-like growth factor-1 to repair acute skeletal muscle injury. FASEB J. 2010; 25: 358-369.
-
(2010)
FASEB J.
, vol.25
, pp. 358-369
-
-
Lu, H.1
Huang, D.2
Saederup, N.3
Charo, I.F.4
Ransohoff, R.M.5
Zhou, L.6
-
38
-
-
21244443731
-
Macrophages sequentially change their functional phenotype in response to changes in microenvironmental influences
-
Stout RD, Jiang C, Matta B, Tietzel I, Watkins SK, Suttles J,. Macrophages sequentially change their functional phenotype in response to changes in microenvironmental influences. J. Immunol. 2005; 175: 342-349.
-
(2005)
J. Immunol.
, vol.175
, pp. 342-349
-
-
Stout, R.D.1
Jiang, C.2
Matta, B.3
Tietzel, I.4
Watkins, S.K.5
Suttles, J.6
-
39
-
-
77953900264
-
Macrophages in renal development, injury, and repair
-
Williams TM, Little MH, Ricardo SD,. Macrophages in renal development, injury, and repair. Semin. Nephrol. 2010; 30: 255-267.
-
(2010)
Semin. Nephrol.
, vol.30
, pp. 255-267
-
-
Williams, T.M.1
Little, M.H.2
Ricardo, S.D.3
-
40
-
-
0033082935
-
Other functions, other genes: Alternative activation of antigen-presenting cells
-
Goerdt S, Orfanos CE,. Other functions, other genes: Alternative activation of antigen-presenting cells. Immunity 1999; 10: 137-142.
-
(1999)
Immunity
, vol.10
, pp. 137-142
-
-
Goerdt, S.1
Orfanos, C.E.2
-
41
-
-
7644231561
-
The chemokine system in diverse forms of macrophage activation and polarization
-
Mantovani A, Sica A, Sozzani S, Allavena P, Vecchi A, Locati M,. The chemokine system in diverse forms of macrophage activation and polarization. Trends Immunol. 2004; 25: 677-686.
-
(2004)
Trends Immunol.
, vol.25
, pp. 677-686
-
-
Mantovani, A.1
Sica, A.2
Sozzani, S.3
Allavena, P.4
Vecchi, A.5
Locati, M.6
-
42
-
-
56749174940
-
Exploring the full spectrum of macrophage activation
-
Mosser DM, Edwards JP,. Exploring the full spectrum of macrophage activation. Nat. Rev. Immunol. 2008; 8: 958-969.
-
(2008)
Nat. Rev. Immunol.
, vol.8
, pp. 958-969
-
-
Mosser, D.M.1
Edwards, J.P.2
-
43
-
-
38449102676
-
Macrophage activation and polarization
-
Martinez FO, Sica A, Mantovani A, Locati M,. Macrophage activation and polarization. Front. Biosci. 2008; 13: 453-461.
-
(2008)
Front. Biosci.
, vol.13
, pp. 453-461
-
-
Martinez, F.O.1
Sica, A.2
Mantovani, A.3
Locati, M.4
-
44
-
-
0033963076
-
Blocking P-selectin protects from ischemia/reperfusion-induced acute renal failure
-
Singbartl K, Green SA, Ley K,. Blocking P-selectin protects from ischemia/reperfusion-induced acute renal failure. FASEB J. 2000; 14: 48-54.
-
(2000)
FASEB J.
, vol.14
, pp. 48-54
-
-
Singbartl, K.1
Green, S.A.2
Ley, K.3
-
45
-
-
0033852893
-
Protection from ischemia-reperfusion induced severe acute renal failure by blocking E-selectin
-
Singbartl K, Ley K,. Protection from ischemia-reperfusion induced severe acute renal failure by blocking E-selectin. Crit. Care Med. 2000; 28: 2507-2514.
-
(2000)
Crit. Care Med.
, vol.28
, pp. 2507-2514
-
-
Singbartl, K.1
Ley, K.2
-
46
-
-
0031458014
-
Prevention of late renal changes after initial ischemia/reperfusion injury by blocking early selectin binding
-
Takada M, Nadeau KC, Shaw GD, Tilney NL,. Prevention of late renal changes after initial ischemia/reperfusion injury by blocking early selectin binding. Transplantation 1997; 64: 1520-1525.
-
(1997)
Transplantation
, vol.64
, pp. 1520-1525
-
-
Takada, M.1
Nadeau, K.C.2
Shaw, G.D.3
Tilney, N.L.4
-
47
-
-
0030975020
-
The cytokine-adhesion molecule cascade in ischemia/reperfusion injury of the rat kidney. Inhibition by a soluble P-selectin ligand
-
Takada M, Nadeau KC, Shaw GD, Marquette KA, Tilney NL,. The cytokine-adhesion molecule cascade in ischemia/reperfusion injury of the rat kidney. Inhibition by a soluble P-selectin ligand. J. Clin. Invest. 1997; 99: 2682-2690.
-
(1997)
J. Clin. Invest.
, vol.99
, pp. 2682-2690
-
-
Takada, M.1
Nadeau, K.C.2
Shaw, G.D.3
Marquette, K.A.4
Tilney, N.L.5
-
48
-
-
0027477762
-
Antibodies to intercellular adhesion molecule 1/lymphocyte function-associated antigen 1 prevent crescent formation in rat autoimmune glomerulonephritis
-
Nishikawa K, Guo YJ, Miyasaka M, et al. Antibodies to intercellular adhesion molecule 1/lymphocyte function-associated antigen 1 prevent crescent formation in rat autoimmune glomerulonephritis. J. Exp. Med. 1993; 177: 667-677.
-
(1993)
J. Exp. Med.
, vol.177
, pp. 667-677
-
-
Nishikawa, K.1
Guo, Y.J.2
Miyasaka, M.3
-
49
-
-
0027238106
-
Antibodies against intercellular adhesion molecule-1 and lymphocyte function-associated antigen-1 prevent glomerular injury in rat experimental crescentic glomerulonephritis
-
Kawasaki K, Yaoita E, Yamamoto T, Tamatani T, Miyasaka M, Kihara I,. Antibodies against intercellular adhesion molecule-1 and lymphocyte function-associated antigen-1 prevent glomerular injury in rat experimental crescentic glomerulonephritis. J. Immunol. 1993; 150: 1074-1083.
-
(1993)
J. Immunol.
, vol.150
, pp. 1074-1083
-
-
Kawasaki, K.1
Yaoita, E.2
Yamamoto, T.3
Tamatani, T.4
Miyasaka, M.5
Kihara, I.6
-
50
-
-
0031665608
-
Improved survival and amelioration of nephrotoxic nephritis in intercellular adhesion molecule-1 knockout mice
-
Janssen U, Ostendorf T, Gaertner S, et al. Improved survival and amelioration of nephrotoxic nephritis in intercellular adhesion molecule-1 knockout mice. J. Am. Soc. Nephrol. 1998; 9: 1805-1814.
-
(1998)
J. Am. Soc. Nephrol.
, vol.9
, pp. 1805-1814
-
-
Janssen, U.1
Ostendorf, T.2
Gaertner, S.3
-
51
-
-
0027417879
-
Attenuation of immune-mediated glomerulonephritis with an anti-CD11b monoclonal antibody
-
Wu X, Pippin J, Lefkowith JB,. Attenuation of immune-mediated glomerulonephritis with an anti-CD11b monoclonal antibody. Am. J. Physiol. 1993; 264: F715-721.
-
(1993)
Am. J. Physiol.
, vol.264
-
-
Wu, X.1
Pippin, J.2
Lefkowith, J.B.3
-
52
-
-
15144359119
-
Increased expression of intercellular adhesion molecule-1 (ICAM-1) in diabetic rat glomeruli: Glomerular hyperfiltration is a potential mechanism of ICAM-1 upregulation
-
Sugimoto H, Shikata K, Hirata K, et al. Increased expression of intercellular adhesion molecule-1 (ICAM-1) in diabetic rat glomeruli: Glomerular hyperfiltration is a potential mechanism of ICAM-1 upregulation. Diabetes 1997; 46: 2075-2081.
-
(1997)
Diabetes
, vol.46
, pp. 2075-2081
-
-
Sugimoto, H.1
Shikata, K.2
Hirata, K.3
-
53
-
-
0141866840
-
Intercellular adhesion molecule-1-deficient mice are resistant against renal injury after induction of diabetes
-
Okada S, Shikata K, Matsuda M, et al. Intercellular adhesion molecule-1-deficient mice are resistant against renal injury after induction of diabetes. Diabetes 2003; 52: 2586-2593.
-
(2003)
Diabetes
, vol.52
, pp. 2586-2593
-
-
Okada, S.1
Shikata, K.2
Matsuda, M.3
-
54
-
-
26944480830
-
Intercellular adhesion molecule-1 deficiency is protective against nephropathy in type 2 diabetic db/db mice
-
Chow FY, Nikolic-Paterson DJ, Ozols E, Atkins RC, Tesch GH,. Intercellular adhesion molecule-1 deficiency is protective against nephropathy in type 2 diabetic db/db mice. J. Am. Soc. Nephrol. 2005; 16: 1711-1722.
-
(2005)
J. Am. Soc. Nephrol.
, vol.16
, pp. 1711-1722
-
-
Chow, F.Y.1
Nikolic-Paterson, D.J.2
Ozols, E.3
Atkins, R.C.4
Tesch, G.H.5
-
55
-
-
30944456325
-
Distinct roles of Mac-1 and its counter-receptors in neonatal obstructive nephropathy
-
Lange-Sperandio B, Schimpgen K, Rodenbeck B, et al. Distinct roles of Mac-1 and its counter-receptors in neonatal obstructive nephropathy. Kidney Int. 2006; 69: 81-88.
-
(2006)
Kidney Int.
, vol.69
, pp. 81-88
-
-
Lange-Sperandio, B.1
Schimpgen, K.2
Rodenbeck, B.3
-
56
-
-
0033850118
-
Antibodies to both ICAM-1 and LFA-1 do not protect the kidney against toxic (HgCl2) injury
-
Ghielli M, Verstrepen WA, De Greef KE, et al. Antibodies to both ICAM-1 and LFA-1 do not protect the kidney against toxic (HgCl2) injury. Kidney Int. 2000; 58: 1121-1134.
-
(2000)
Kidney Int.
, vol.58
, pp. 1121-1134
-
-
Ghielli, M.1
Verstrepen, W.A.2
De Greef, K.E.3
-
57
-
-
77953885701
-
Targeting the recruitment of monocytes and macrophages in renal disease
-
Vielhauer V, Kulkarni O, Reichel CA, Anders HJ,. Targeting the recruitment of monocytes and macrophages in renal disease. Semin. Nephrol. 2010; 30: 318-333.
-
(2010)
Semin. Nephrol.
, vol.30
, pp. 318-333
-
-
Vielhauer, V.1
Kulkarni, O.2
Reichel, C.A.3
Anders, H.J.4
-
58
-
-
0032919614
-
Monocyte chemoattractant protein-1 promotes macrophage-mediated tubular injury, but not glomerular injury, in nephrotoxic serum nephritis
-
Tesch GH, Schwarting A, Kinoshita K, Lan HY, Rollins BJ, Kelley VR,. Monocyte chemoattractant protein-1 promotes macrophage-mediated tubular injury, but not glomerular injury, in nephrotoxic serum nephritis. J. Clin. Invest. 1999; 103: 73-80.
-
(1999)
J. Clin. Invest.
, vol.103
, pp. 73-80
-
-
Tesch, G.H.1
Schwarting, A.2
Kinoshita, K.3
Lan, H.Y.4
Rollins, B.J.5
Kelley, V.R.6
-
59
-
-
34547645572
-
Spiegelmer inhibition of CCL2/MCP-1 ameliorates lupus nephritis in MRL-(Fas)lpr mice
-
Kulkarni O, Pawar RD, Purschke W, et al. Spiegelmer inhibition of CCL2/MCP-1 ameliorates lupus nephritis in MRL-(Fas)lpr mice. J. Am. Soc. Nephrol. 2007; 18: 2350-2358.
-
(2007)
J. Am. Soc. Nephrol.
, vol.18
, pp. 2350-2358
-
-
Kulkarni, O.1
Pawar, R.D.2
Purschke, W.3
-
60
-
-
0033402848
-
Monocyte chemoattractant protein 1-dependent leukocytic infiltrates are responsible for autoimmune disease in MRL-Fas(lpr) mice
-
Tesch GH, Maifert S, Schwarting A, Rollins BJ, Kelley VR,. Monocyte chemoattractant protein 1-dependent leukocytic infiltrates are responsible for autoimmune disease in MRL-Fas(lpr) mice. J. Exp. Med. 1999; 190: 1813-1824.
-
(1999)
J. Exp. Med.
, vol.190
, pp. 1813-1824
-
-
Tesch, G.H.1
Maifert, S.2
Schwarting, A.3
Rollins, B.J.4
Kelley, V.R.5
-
61
-
-
33645903240
-
Chemokine receptor Ccr2 deficiency reduces renal disease and prolongs survival in MRL/lpr lupus-prone mice
-
Perez de Lema G, Maier H, Franz TJ, et al. Chemokine receptor Ccr2 deficiency reduces renal disease and prolongs survival in MRL/lpr lupus-prone mice. J. Am. Soc. Nephrol. 2005; 16: 3592-3601.
-
(2005)
J. Am. Soc. Nephrol.
, vol.16
, pp. 3592-3601
-
-
Perez De Lema, G.1
Maier, H.2
Franz, T.J.3
-
62
-
-
0030887336
-
Monocyte chemoattractant protein-1 mediates monocyte/macrophage influx in anti-thymocyte antibody-induced glomerulonephritis
-
Wenzel U, Schneider A, Valente AJ, et al. Monocyte chemoattractant protein-1 mediates monocyte/macrophage influx in anti-thymocyte antibody-induced glomerulonephritis. Kidney Int. 1997; 51: 770-776.
-
(1997)
Kidney Int.
, vol.51
, pp. 770-776
-
-
Wenzel, U.1
Schneider, A.2
Valente, A.J.3
-
63
-
-
34447534187
-
Inhibition of MCP-1/CCR2 pathway ameliorates the development of diabetic nephropathy
-
Kanamori H, Matsubara T, Mima A, et al. Inhibition of MCP-1/CCR2 pathway ameliorates the development of diabetic nephropathy. Biochem. Biophys. Res. Commun. 2007; 360: 772-777.
-
(2007)
Biochem. Biophys. Res. Commun.
, vol.360
, pp. 772-777
-
-
Kanamori, H.1
Matsubara, T.2
Mima, A.3
-
64
-
-
30944456936
-
Monocyte chemoattractant protein-1 promotes the development of diabetic renal injury in streptozotocin-treated mice
-
Chow FY, Nikolic-Paterson DJ, Ozols E, Atkins RC, Rollin BJ, Tesch GH,. Monocyte chemoattractant protein-1 promotes the development of diabetic renal injury in streptozotocin-treated mice. Kidney Int. 2006; 69: 73-80.
-
(2006)
Kidney Int.
, vol.69
, pp. 73-80
-
-
Chow, F.Y.1
Nikolic-Paterson, D.J.2
Ozols, E.3
Atkins, R.C.4
Rollin, B.J.5
Tesch, G.H.6
-
65
-
-
3042692326
-
Blockade of CCR2 ameliorates progressive fibrosis in kidney
-
Kitagawa K, Wada T, Furuichi K, et al. Blockade of CCR2 ameliorates progressive fibrosis in kidney. Am. J. Pathol. 2004; 165: 237-246.
-
(2004)
Am. J. Pathol.
, vol.165
, pp. 237-246
-
-
Kitagawa, K.1
Wada, T.2
Furuichi, K.3
-
66
-
-
12144286102
-
Gene therapy via blockade of monocyte chemoattractant protein-1 for renal fibrosis
-
Wada T, Furuichi K, Sakai N, et al. Gene therapy via blockade of monocyte chemoattractant protein-1 for renal fibrosis. J. Am. Soc. Nephrol. 2004; 15: 940-948.
-
(2004)
J. Am. Soc. Nephrol.
, vol.15
, pp. 940-948
-
-
Wada, T.1
Furuichi, K.2
Sakai, N.3
-
67
-
-
57049087454
-
The chemokine receptors CCR2 and CX3CR1 mediate monocyte/macrophage trafficking in kidney ischemia-reperfusion injury
-
Li L, Huang L, Sung S-SJ, et al. The chemokine receptors CCR2 and CX3CR1 mediate monocyte/macrophage trafficking in kidney ischemia-reperfusion injury. Kidney Int. 2008; 74: 1526-1537.
-
(2008)
Kidney Int.
, vol.74
, pp. 1526-1537
-
-
Li, L.1
Huang, L.2
Sung, S.-S.3
-
68
-
-
0141455330
-
CCR2 signaling contributes to ischemia-reperfusion injury in kidney
-
Furuichi K, Wada T, Iwata Y, et al. CCR2 signaling contributes to ischemia-reperfusion injury in kidney. J. Am. Soc. Nephrol. 2003; 14: 2503-2515.
-
(2003)
J. Am. Soc. Nephrol.
, vol.14
, pp. 2503-2515
-
-
Furuichi, K.1
Wada, T.2
Iwata, Y.3
-
69
-
-
33845989083
-
Monocyte subsets differentially employ CCR2, CCR5, and CX3CR1 to accumulate within atherosclerotic plaques
-
Tacke F, Alvarez D, Kaplan TJ, et al. Monocyte subsets differentially employ CCR2, CCR5, and CX3CR1 to accumulate within atherosclerotic plaques. J. Clin. Invest. 2007; 117: 185-194.
-
(2007)
J. Clin. Invest.
, vol.117
, pp. 185-194
-
-
Tacke, F.1
Alvarez, D.2
Kaplan, T.J.3
-
70
-
-
33748493394
-
Distinct in vivo roles of colony-stimulating factor-1 isoforms in renal inflammation
-
Jang M-H, Herber DM, Jiang X, et al. Distinct in vivo roles of colony-stimulating factor-1 isoforms in renal inflammation. J. Immunol. 2006; 177: 4055-4063.
-
(2006)
J. Immunol.
, vol.177
, pp. 4055-4063
-
-
Jang, M.-H.1
Herber, D.M.2
Jiang, X.3
-
71
-
-
84855387182
-
Autocrine CSF-1 and CSF-1 receptor co-expression promotes renal cell carcinoma growth
-
Menke J, Kriegsmann J, Schimanski CC, Schwartz MM, Andreas S, Kelley VR,. Autocrine CSF-1 and CSF-1 receptor co-expression promotes renal cell carcinoma growth. Cancer Res. 2012; 72: 187-200.
-
(2012)
Cancer Res.
, vol.72
, pp. 187-200
-
-
Menke, J.1
Kriegsmann, J.2
Schimanski, C.C.3
Schwartz, M.M.4
Andreas, S.5
Kelley, V.R.6
-
72
-
-
0025295801
-
Mouse mesangial cells produce colony-stimulating factor-1 (CSF-1) and express the CSF-1 receptor
-
Mori T, Bartocci A, Satriano J, et al. Mouse mesangial cells produce colony-stimulating factor-1 (CSF-1) and express the CSF-1 receptor. J. Immunol. 1990; 144: 4697-4702.
-
(1990)
J. Immunol.
, vol.144
, pp. 4697-4702
-
-
Mori, T.1
Bartocci, A.2
Satriano, J.3
-
73
-
-
66949118234
-
Renal epithelial cell-derived monocyte colony stimulating factor as a local informant of renal injury and means of monocyte activation
-
Singh KA, Kampen RL, Hoffmann SC, Eldaif SM, Kirk AD,. Renal epithelial cell-derived monocyte colony stimulating factor as a local informant of renal injury and means of monocyte activation. Transpl. Int. 2009; 22: 730-737.
-
(2009)
Transpl. Int.
, vol.22
, pp. 730-737
-
-
Singh, K.A.1
Kampen, R.L.2
Hoffmann, S.C.3
Eldaif, S.M.4
Kirk, A.D.5
-
74
-
-
80053557823
-
Distinct roles of CSF-1 isoforms in lupus nephritis
-
Menke J, Iwata Y, Rabacal WA, Basu R, Stanley ER, Kelley VR,. Distinct roles of CSF-1 isoforms in lupus nephritis. J. Am. Soc. Nephrol. 2011; 22: 1821-1833.
-
(2011)
J. Am. Soc. Nephrol.
, vol.22
, pp. 1821-1833
-
-
Menke, J.1
Iwata, Y.2
Rabacal, W.A.3
Basu, R.4
Stanley, E.R.5
Kelley, V.R.6
-
75
-
-
0029836235
-
Macrophage growth factors introduced into the kidney initiate renal injury
-
Naito T, Yokoyama H, Moore KJ, Dranoff G, Mulligan RC, Kelley VR,. Macrophage growth factors introduced into the kidney initiate renal injury. Mol. Med. 1996; 2: 297-312.
-
(1996)
Mol. Med.
, vol.2
, pp. 297-312
-
-
Naito, T.1
Yokoyama, H.2
Moore, K.J.3
Dranoff, G.4
Mulligan, R.C.5
Kelley, V.R.6
-
76
-
-
58849103048
-
Targeting renal macrophage accumulation via the c-fms kinase reduces tubular apoptosis but fails to modify progressive fibrosis in the obstructed rat kidney
-
Ma FY, Liu J, Kitching AR, Manthey CL, Nikolic-Paterson DJ,. Targeting renal macrophage accumulation via the c-fms kinase reduces tubular apoptosis but fails to modify progressive fibrosis in the obstructed rat kidney. Am. J. Physiol. Renal Physiol. 2009; 296: 177-185.
-
(2009)
Am. J. Physiol. Renal Physiol.
, vol.296
, pp. 177-185
-
-
Ma, F.Y.1
Liu, J.2
Kitching, A.R.3
Manthey, C.L.4
Nikolic-Paterson, D.J.5
-
77
-
-
34447645515
-
Characterisation and trophic functions of murine embryonic macrophages based upon the use of a Csf1r-EGFP transgene reporter
-
Rae F, Woods K, Sasmono T, et al. Characterisation and trophic functions of murine embryonic macrophages based upon the use of a Csf1r-EGFP transgene reporter. Dev. Biol. 2007; 308: 232-246.
-
(2007)
Dev. Biol.
, vol.308
, pp. 232-246
-
-
Rae, F.1
Woods, K.2
Sasmono, T.3
-
78
-
-
77952887297
-
Unravelling mononuclear phagocyte heterogeneity
-
Geissmann F, Gordon S, Hume DA, Mowat AM, Randolph GJ,. Unravelling mononuclear phagocyte heterogeneity. Nat. Rev. Immunol. 2010; 10: 453-460.
-
(2010)
Nat. Rev. Immunol.
, vol.10
, pp. 453-460
-
-
Geissmann, F.1
Gordon, S.2
Hume, D.A.3
Mowat, A.M.4
Randolph, G.J.5
-
79
-
-
70449732252
-
Dendritic cell subsets in primary and secondary T cell responses at body surfaces
-
Heath WR, Carbone FR,. Dendritic cell subsets in primary and secondary T cell responses at body surfaces. Nat. Immunol. 2009; 10: 1237-1244.
-
(2009)
Nat. Immunol.
, vol.10
, pp. 1237-1244
-
-
Heath, W.R.1
Carbone, F.R.2
-
81
-
-
0027500568
-
Granulocytes, macrophages, and dendritic cells arise from a common major histocompatibility complex class II-negative progenitor in mouse bone marrow
-
Inaba K, Inaba M, Deguchi M, et al. Granulocytes, macrophages, and dendritic cells arise from a common major histocompatibility complex class II-negative progenitor in mouse bone marrow. Proc. Natl Acad. Sci. U.S.A. 1993; 90: 3038-3042.
-
(1993)
Proc. Natl Acad. Sci. U.S.A.
, vol.90
, pp. 3038-3042
-
-
Inaba, K.1
Inaba, M.2
Deguchi, M.3
-
82
-
-
0033403066
-
Differentiation of phagocytic monocytes into lymph node dendritic cells in vivo
-
Randolph GJ, Inaba K, Robbiani DF, Steinman RM, Muller WA,. Differentiation of phagocytic monocytes into lymph node dendritic cells in vivo. Immunity 1999; 11: 753-761.
-
(1999)
Immunity
, vol.11
, pp. 753-761
-
-
Randolph, G.J.1
Inaba, K.2
Robbiani, D.F.3
Steinman, R.M.4
Muller, W.A.5
-
83
-
-
30344444770
-
A clonogenic bone marrow progenitor specific for macrophages and dendritic cells
-
Fogg DK, Sibon C, Miled C, et al. A clonogenic bone marrow progenitor specific for macrophages and dendritic cells. Science 2006; 311: 83-87.
-
(2006)
Science
, vol.311
, pp. 83-87
-
-
Fogg, D.K.1
Sibon, C.2
Miled, C.3
-
84
-
-
65249089638
-
In vivo analysis of dendritic cell development and homeostasis
-
Liu K, Victora GD, Schwickert TA, et al. In vivo analysis of dendritic cell development and homeostasis. Science 2009; 324: 392-397.
-
(2009)
Science
, vol.324
, pp. 392-397
-
-
Liu, K.1
Victora, G.D.2
Schwickert, T.A.3
-
85
-
-
33744473294
-
Intrasplenic steady-state dendritic cell precursors that are distinct from monocytes
-
Naik SH, Metcalf D, van Nieuwenhuijze A, et al. Intrasplenic steady-state dendritic cell precursors that are distinct from monocytes. Nat. Immunol. 2006; 7: 663-671.
-
(2006)
Nat. Immunol.
, vol.7
, pp. 663-671
-
-
Naik, S.H.1
Metcalf, D.2
Van Nieuwenhuijze, A.3
-
86
-
-
35549000134
-
Development of plasmacytoid and conventional dendritic cell subtypes from single precursor cells derived in vitro and in vivo
-
Naik SH, Sathe P, Park HY, et al. Development of plasmacytoid and conventional dendritic cell subtypes from single precursor cells derived in vitro and in vivo. Nat. Immunol. 2007; 8: 1217-1226.
-
(2007)
Nat. Immunol.
, vol.8
, pp. 1217-1226
-
-
Naik, S.H.1
Sathe, P.2
Park, H.Y.3
-
87
-
-
70049099836
-
Intestinal lamina propria dendritic cell subsets have different origin and functions
-
Varol C, Vallon-Eberhard A, Elinav E, et al. Intestinal lamina propria dendritic cell subsets have different origin and functions. Immunity 2009; 31: 502-512.
-
(2009)
Immunity
, vol.31
, pp. 502-512
-
-
Varol, C.1
Vallon-Eberhard, A.2
Elinav, E.3
-
88
-
-
33846408655
-
Monocytes give rise to mucosal, but not splenic, conventional dendritic cells
-
Varol C, Landsman L, Fogg DK, et al. Monocytes give rise to mucosal, but not splenic, conventional dendritic cells. J. Exp. Med. 2007; 204: 171-180.
-
(2007)
J. Exp. Med.
, vol.204
, pp. 171-180
-
-
Varol, C.1
Landsman, L.2
Fogg, D.K.3
-
89
-
-
43249119617
-
Blood monocyte subsets differentially give rise to CD103+ and CD103- pulmonary dendritic cell populations
-
Jakubzick C, Tacke F, Ginhoux F, et al. Blood monocyte subsets differentially give rise to CD103+ and CD103- pulmonary dendritic cell populations. J. Immunol. 2008; 180: 3019-3027.
-
(2008)
J. Immunol.
, vol.180
, pp. 3019-3027
-
-
Jakubzick, C.1
Tacke, F.2
Ginhoux, F.3
-
90
-
-
33645953640
-
Langerhans cells arise from monocytes in vivo
-
Ginhoux F, Tacke F, Angeli V, et al. Langerhans cells arise from monocytes in vivo. Nat. Immunol. 2006; 7: 265-273.
-
(2006)
Nat. Immunol.
, vol.7
, pp. 265-273
-
-
Ginhoux, F.1
Tacke, F.2
Angeli, V.3
-
91
-
-
10744220446
-
Identification and functional characterization of dendritic cells in the healthy murine kidney and in experimental glomerulonephritis
-
Kruger T, Benke D, Eitner F, et al. Identification and functional characterization of dendritic cells in the healthy murine kidney and in experimental glomerulonephritis. J. Am. Soc. Nephrol. 2004; 15: 613-621.
-
(2004)
J. Am. Soc. Nephrol.
, vol.15
, pp. 613-621
-
-
Kruger, T.1
Benke, D.2
Eitner, F.3
-
92
-
-
77952394844
-
Bone marrow Ly6Chigh monocytes are selectively recruited to injured kidney and differentiate into functionally distinct populations
-
Lin SL, Castano AP, Nowlin BT, Lupher ML, Jr., Duffield JS, Bone marrow Ly6Chigh monocytes are selectively recruited to injured kidney and differentiate into functionally distinct populations. J. Immunol. 2009; 183: 6733-6743.
-
(2009)
J. Immunol.
, vol.183
, pp. 6733-6743
-
-
Lin, S.L.1
Castano, A.P.2
Nowlin, B.T.3
Lupher Jr., M.L.4
Duffield, J.S.5
-
93
-
-
33746482680
-
CX3CR1+ interstitial dendritic cells form a contiguous network throughout the entire kidney
-
Soos TJ, Sims TN, Barisoni L, et al. CX3CR1+ interstitial dendritic cells form a contiguous network throughout the entire kidney. Kidney Int. 2006; 70: 591-596.
-
(2006)
Kidney Int.
, vol.70
, pp. 591-596
-
-
Soos, T.J.1
Sims, T.N.2
Barisoni, L.3
-
94
-
-
58749083404
-
Macrophages as APC and the dendritic cell myth
-
Hume DA,. Macrophages as APC and the dendritic cell myth. J. Immunol. 2008; 181: 5829-5835.
-
(2008)
J. Immunol.
, vol.181
, pp. 5829-5835
-
-
Hume, D.A.1
-
95
-
-
0036826744
-
The mononuclear phagocyte system revisited
-
Hume DA, Ross IL, Himes SR, Sasmono RT, Wells CA, Ravasi T,. The mononuclear phagocyte system revisited. J. Leukoc. Biol. 2002; 72: 621-627.
-
(2002)
J. Leukoc. Biol.
, vol.72
, pp. 621-627
-
-
Hume, D.A.1
Ross, I.L.2
Himes, S.R.3
Sasmono, R.T.4
Wells, C.A.5
Ravasi, T.6
-
96
-
-
22544455619
-
The colony-stimulating factor 1 receptor is expressed on dendritic cells during differentiation and regulates their expansion
-
MacDonald KP, Rowe V, Bofinger HM, et al. The colony-stimulating factor 1 receptor is expressed on dendritic cells during differentiation and regulates their expansion. J. Immunol. 2005; 175: 1399-1405.
-
(2005)
J. Immunol.
, vol.175
, pp. 1399-1405
-
-
MacDonald, K.P.1
Rowe, V.2
Bofinger, H.M.3
-
97
-
-
0037307026
-
A macrophage colony-stimulating factor receptor-green fluorescent protein transgene is expressed throughout the mononuclear phagocyte system of the mouse
-
Sasmono RT, Oceandy D, Pollard JW, et al. A macrophage colony-stimulating factor receptor-green fluorescent protein transgene is expressed throughout the mononuclear phagocyte system of the mouse. Blood 2003; 101: 1155-1163.
-
(2003)
Blood
, vol.101
, pp. 1155-1163
-
-
Sasmono, R.T.1
Oceandy, D.2
Pollard, J.W.3
-
98
-
-
45249108643
-
Macrophages and dendritic cells: What is the difference?
-
Ferenbach D, Hughes J,. Macrophages and dendritic cells: What is the difference? Kidney Int. 2008; 74: 5-7.
-
(2008)
Kidney Int.
, vol.74
, pp. 5-7
-
-
Ferenbach, D.1
Hughes, J.2
-
99
-
-
0036518287
-
Mouse and human dendritic cell subtypes
-
Shortman K, Liu YJ,. Mouse and human dendritic cell subtypes. Nat. Rev. Immunol. 2002; 2: 151-161.
-
(2002)
Nat. Rev. Immunol.
, vol.2
, pp. 151-161
-
-
Shortman, K.1
Liu, Y.J.2
-
100
-
-
16544371809
-
Visualizing dendritic cell networks in vivo
-
Lindquist RL, Shakhar G, Dudziak D, et al. Visualizing dendritic cell networks in vivo. Nat. Immunol. 2004; 5: 1243-1250.
-
(2004)
Nat. Immunol.
, vol.5
, pp. 1243-1250
-
-
Lindquist, R.L.1
Shakhar, G.2
Dudziak, D.3
-
101
-
-
45249111741
-
Compartment specific expression of dendritic cell markers in human glomerulonephritis
-
Segerer S, Heller F, Lindenmeyer MT, et al. Compartment specific expression of dendritic cell markers in human glomerulonephritis. Kidney Int. 2008; 74: 37-46.
-
(2008)
Kidney Int.
, vol.74
, pp. 37-46
-
-
Segerer, S.1
Heller, F.2
Lindenmeyer, M.T.3
-
102
-
-
0028220655
-
Isolation and characterization of dendritic cells from mouse heart and kidney
-
Austyn JM, Hankins DF, Larsen CP, Morris PJ, Rao AS, Roake JA,. Isolation and characterization of dendritic cells from mouse heart and kidney. J. Immunol. 1994; 152: 2401-2410.
-
(1994)
J. Immunol.
, vol.152
, pp. 2401-2410
-
-
Austyn, J.M.1
Hankins, D.F.2
Larsen, C.P.3
Morris, P.J.4
Rao, A.S.5
Roake, J.A.6
-
103
-
-
1942471974
-
In vivo-mobilized kidney dendritic cells are functionally immature, subvert alloreactive T-cell responses, and prolong organ allograft survival
-
Coates PT, Duncan FJ, Colvin BL, et al. In vivo-mobilized kidney dendritic cells are functionally immature, subvert alloreactive T-cell responses, and prolong organ allograft survival. Transplantation 2004; 77: 1080-1089.
-
(2004)
Transplantation
, vol.77
, pp. 1080-1089
-
-
Coates, P.T.1
Duncan, F.J.2
Colvin, B.L.3
-
104
-
-
32644462769
-
Antigen presentation by dendritic cells in renal lymph nodes is linked to systemic and local injury to the kidney
-
Dong X, Swaminathan S, Bachman LA, Croatt AJ, Nath KA, Griffin MD,. Antigen presentation by dendritic cells in renal lymph nodes is linked to systemic and local injury to the kidney. Kidney Int. 2005; 68: 1096-1108.
-
(2005)
Kidney Int.
, vol.68
, pp. 1096-1108
-
-
Dong, X.1
Swaminathan, S.2
Bachman, L.A.3
Croatt, A.J.4
Nath, K.A.5
Griffin, M.D.6
-
105
-
-
23444442193
-
Both dendritic cells and macrophages can stimulate naive CD8 T cells in vivo to proliferate, develop effector function, and differentiate into memory cells
-
Pozzi LA, Maciaszek JW, Rock KL,. Both dendritic cells and macrophages can stimulate naive CD8 T cells in vivo to proliferate, develop effector function, and differentiate into memory cells. J. Immunol. 2005; 175: 2071-2081.
-
(2005)
J. Immunol.
, vol.175
, pp. 2071-2081
-
-
Pozzi, L.A.1
MacIaszek, J.W.2
Rock, K.L.3
-
106
-
-
36049000849
-
Antigen presentation the macrophage way
-
Martinez-Pomares L, Gordon S,. Antigen presentation the macrophage way. Cell 2007; 131: 641-643.
-
(2007)
Cell
, vol.131
, pp. 641-643
-
-
Martinez-Pomares, L.1
Gordon, S.2
-
107
-
-
0022378130
-
Immunohistochemical analysis of murine mononuclear phagocytes that express class II major histocompatibility antigens
-
Hume DA,. Immunohistochemical analysis of murine mononuclear phagocytes that express class II major histocompatibility antigens. Immunobiology 1985; 170: 381-389.
-
(1985)
Immunobiology
, vol.170
, pp. 381-389
-
-
Hume, D.A.1
-
108
-
-
0020624995
-
Mononuclear phagocyte system of the mouse defined by immunohistochemical localization of antigen F4/80
-
Hume DA, Gordon S,. Mononuclear phagocyte system of the mouse defined by immunohistochemical localization of antigen F4/80. J. Exp. Med. 1983; 157: 1704-1709.
-
(1983)
J. Exp. Med.
, vol.157
, pp. 1704-1709
-
-
Hume, D.A.1
Gordon, S.2
-
109
-
-
40449100098
-
The kidney-renal lymph node-system contributes to cross-tolerance against innocuous circulating antigen
-
Lukacs-Kornek V, Burgdorf S, Diehl L, Specht S, Kornek M, Kurts C,. The kidney-renal lymph node-system contributes to cross-tolerance against innocuous circulating antigen. J. Immunol. 2008; 180: 706-715.
-
(2008)
J. Immunol.
, vol.180
, pp. 706-715
-
-
Lukacs-Kornek, V.1
Burgdorf, S.2
Diehl, L.3
Specht, S.4
Kornek, M.5
Kurts, C.6
-
110
-
-
58149518700
-
Proteasomal processing of albumin by renal dendritic cells generates antigenic peptides
-
Macconi D, Chiabrando C, Schiarea S, et al. Proteasomal processing of albumin by renal dendritic cells generates antigenic peptides. J. Am. Soc. Nephrol. 2009; 20: 123-130.
-
(2009)
J. Am. Soc. Nephrol.
, vol.20
, pp. 123-130
-
-
MacConi, D.1
Chiabrando, C.2
Schiarea, S.3
-
111
-
-
73949107838
-
Intestinal CD103+, but not CX3CR1+, antigen sampling cells migrate in lymph and serve classical dendritic cell functions
-
Schulz O, Jaensson E, Persson EK, et al. Intestinal CD103+, but not CX3CR1+, antigen sampling cells migrate in lymph and serve classical dendritic cell functions. J. Exp. Med. 2009; 206: 3101-3114.
-
(2009)
J. Exp. Med.
, vol.206
, pp. 3101-3114
-
-
Schulz, O.1
Jaensson, E.2
Persson, E.K.3
-
112
-
-
75149194886
-
Renal dendritic cells ameliorate nephrotoxic acute kidney injury
-
Tadagavadi RK, Reeves WB,. Renal dendritic cells ameliorate nephrotoxic acute kidney injury. J. Am. Soc. Nephrol. 2009; 21: 53-63.
-
(2009)
J. Am. Soc. Nephrol.
, vol.21
, pp. 53-63
-
-
Tadagavadi, R.K.1
Reeves, W.B.2
-
113
-
-
0015619335
-
Identification of a novel cell type in peripheral lymphoid organs of mice. I. Morphology, quantitation, tissue distribution
-
Steinman RM, Cohn ZA,. Identification of a novel cell type in peripheral lymphoid organs of mice. I. Morphology, quantitation, tissue distribution. J. Exp. Med. 1973; 137: 1142-1162.
-
(1973)
J. Exp. Med.
, vol.137
, pp. 1142-1162
-
-
Steinman, R.M.1
Cohn, Z.A.2
-
114
-
-
77953901619
-
Monocyte and macrophage biology: An overview
-
Rees AJ,. Monocyte and macrophage biology: An overview. Semin. Nephrol. 2010; 30: 216-233.
-
(2010)
Semin. Nephrol.
, vol.30
, pp. 216-233
-
-
Rees, A.J.1
-
115
-
-
79951618995
-
Renal fibrosis in murine obstructive nephropathy is attenuated by depletion of monocyte lineage, not dendritic cells
-
Machida Y, Kitamoto K, Izumi Y, et al. Renal fibrosis in murine obstructive nephropathy is attenuated by depletion of monocyte lineage, not dendritic cells. J. Pharmacol. Sci. 2010; 114: 464-473.
-
(2010)
J. Pharmacol. Sci.
, vol.114
, pp. 464-473
-
-
Machida, Y.1
Kitamoto, K.2
Izumi, Y.3
-
116
-
-
83455228619
-
Renal dendritic cells adopt a pro-inflammatory phenotype in obstructive uropathy to activate T cells but do not directly contribute to fibrosis
-
Snelgrove SL, Kausman JY, Lo C, et al. Renal dendritic cells adopt a pro-inflammatory phenotype in obstructive uropathy to activate T cells but do not directly contribute to fibrosis. Am. J. Pathol. 2012; 180: 91-103.
-
(2012)
Am. J. Pathol.
, vol.180
, pp. 91-103
-
-
Snelgrove, S.L.1
Kausman, J.Y.2
Lo, C.3
-
117
-
-
40449098272
-
Renal dendritic cells stimulate IL-10 production and attenuate nephrotoxic nephritis
-
Scholz J, Lukacs-Kornek V, Engel DR, et al. Renal dendritic cells stimulate IL-10 production and attenuate nephrotoxic nephritis. J. Am. Soc. Nephrol. 2008; 19: 527-537.
-
(2008)
J. Am. Soc. Nephrol.
, vol.19
, pp. 527-537
-
-
Scholz, J.1
Lukacs-Kornek, V.2
Engel, D.R.3
-
118
-
-
27544471786
-
Conditional ablation of macrophages halts progression of crescentic glomerulonephritis
-
Duffield JS, Tipping PG, Kipari T, et al. Conditional ablation of macrophages halts progression of crescentic glomerulonephritis. Am. J. Pathol. 2005; 167: 1207-1219.
-
(2005)
Am. J. Pathol.
, vol.167
, pp. 1207-1219
-
-
Duffield, J.S.1
Tipping, P.G.2
Kipari, T.3
-
119
-
-
66449086623
-
Kidney dendritic cell activation is required for progression of renal disease in a mouse model of glomerular injury
-
Heymann F, Meyer-Schwesinger C, Hamilton-Williams EE, et al. Kidney dendritic cell activation is required for progression of renal disease in a mouse model of glomerular injury. J. Clin. Invest. 2009; 119: 1286-1297.
-
(2009)
J. Clin. Invest.
, vol.119
, pp. 1286-1297
-
-
Heymann, F.1
Meyer-Schwesinger, C.2
Hamilton-Williams, E.E.3
-
120
-
-
79551680089
-
Kidney dendritic cells become pathogenic during crescentic glomerulonephritis with proteinuria
-
Hochheiser K, Engel DR, Hammerich L, et al. Kidney dendritic cells become pathogenic during crescentic glomerulonephritis with proteinuria. J. Am. Soc. Nephrol. 2011; 22: 306-316.
-
(2011)
J. Am. Soc. Nephrol.
, vol.22
, pp. 306-316
-
-
Hochheiser, K.1
Engel, D.R.2
Hammerich, L.3
-
121
-
-
77952998952
-
IL-10/TGF-beta-modified macrophages induce regulatory T cells and protect against adriamycin nephrosis
-
Cao Q, Wang Y, Zheng D, et al. IL-10/TGF-beta-modified macrophages induce regulatory T cells and protect against adriamycin nephrosis. J. Am. Soc. Nephrol. 2010; 21: 933-942.
-
(2010)
J. Am. Soc. Nephrol.
, vol.21
, pp. 933-942
-
-
Cao, Q.1
Wang, Y.2
Zheng, D.3
-
122
-
-
34547461118
-
Ex vivo programmed macrophages ameliorate experimental chronic inflammatory renal disease
-
Wang Y, Wang YP, Zheng G, et al. Ex vivo programmed macrophages ameliorate experimental chronic inflammatory renal disease. Kidney Int. 2007; 72: 290-299.
-
(2007)
Kidney Int.
, vol.72
, pp. 290-299
-
-
Wang, Y.1
Wang, Y.P.2
Zheng, G.3
-
123
-
-
79751527661
-
Transfused macrophages ameliorate pancreatic and renal injury in murine diabetes mellitus
-
Zheng D, Wang Y, Cao Q, et al. Transfused macrophages ameliorate pancreatic and renal injury in murine diabetes mellitus. Nephron Exp. Nephrol. 2011; 118: e87-e99.
-
(2011)
Nephron Exp. Nephrol.
, vol.118
-
-
Zheng, D.1
Wang, Y.2
Cao, Q.3
-
124
-
-
80052650727
-
Cutting Edge: Immunological consequences and trafficking of human regulatory macrophages administered to renal transplant recipients
-
Hutchinson JA, Riquelme P, Sawitzki B, et al. Cutting Edge: Immunological consequences and trafficking of human regulatory macrophages administered to renal transplant recipients. J. Immunol. 2011; 187: 2072-2078.
-
(2011)
J. Immunol.
, vol.187
, pp. 2072-2078
-
-
Hutchinson, J.A.1
Riquelme, P.2
Sawitzki, B.3
|