메뉴 건너뛰기




Volumn 36, Issue 2 PART 1, 2009, Pages 1632-1644

Evolutionary algorithms for subgroup discovery in e-learning: A practical application using Moodle data

Author keywords

Evolutionary algorithms; Fuzzy rules; Subgroup discovery; Web based education

Indexed keywords

E-LEARNING; FUZZY INFERENCE; FUZZY RULES; INFORMATION MANAGEMENT;

EID: 56349162269     PISSN: 09574174     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.eswa.2007.11.026     Document Type: Article
Times cited : (85)

References (56)
  • 1
    • 0027621699 scopus 로고    scopus 로고
    • Agrawal, R., Imielinski, T., & Swami, A. (1993). Mining association rules between sets of items in large databases. In Proceedings of the 1993 ACM SIGMOD international conference on management of data (pp. 207-216). Washington, DC.
    • Agrawal, R., Imielinski, T., & Swami, A. (1993). Mining association rules between sets of items in large databases. In Proceedings of the 1993 ACM SIGMOD international conference on management of data (pp. 207-216). Washington, DC.
  • 2
    • 56349163856 scopus 로고    scopus 로고
    • Alcalá, J., Sánchez, L., García, S., del Jesus, M. J., Ventura, S., Garrell, J. M., et al. (2007). KEEL: A data mining software tool for assessing the performance of knowledge extraction-based on evolutionary algorithms. Soft computing, to appear.
    • Alcalá, J., Sánchez, L., García, S., del Jesus, M. J., Ventura, S., Garrell, J. M., et al. (2007). KEEL: A data mining software tool for assessing the performance of knowledge extraction-based on evolutionary algorithms. Soft computing, to appear.
  • 3
    • 56349105627 scopus 로고    scopus 로고
    • Atzmueller, M., Puppe, F. & Buscher, H. P. (2004). Towards knowledge-intensive subgroup discovery. In Proceedings Lernen, Wissensentdeckung und Adaptivität Workshop (LWA'04) (pp. 117-123). Berlin, Germany.
    • Atzmueller, M., Puppe, F. & Buscher, H. P. (2004). Towards knowledge-intensive subgroup discovery. In Proceedings Lernen, Wissensentdeckung und Adaptivität Workshop (LWA'04) (pp. 117-123). Berlin, Germany.
  • 4
    • 33750322433 scopus 로고    scopus 로고
    • SD-Map - A fast algorithm for exhaustive subgroup discovery
    • Proceedings of the 10th European conference on principles and practice of knowledge discovery in databases (PKDD 2006), Springer-Verlag, Berlin
    • Atzmueller M., and Puppe F. SD-Map - A fast algorithm for exhaustive subgroup discovery. Proceedings of the 10th European conference on principles and practice of knowledge discovery in databases (PKDD 2006). Lecture notes in computer science Vol. 4213 (2006), Springer-Verlag, Berlin 6-17
    • (2006) Lecture notes in computer science , vol.4213 , pp. 6-17
    • Atzmueller, M.1    Puppe, F.2
  • 5
    • 0001268158 scopus 로고    scopus 로고
    • Evolving fuzzy rule based controllers using genetic algorithms
    • Carse B., Fogarty T.C., and Munro A. Evolving fuzzy rule based controllers using genetic algorithms. Fuzzy Sets and Systems 80 (1996) 273-293
    • (1996) Fuzzy Sets and Systems , vol.80 , pp. 273-293
    • Carse, B.1    Fogarty, T.C.2    Munro, A.3
  • 6
    • 56349085166 scopus 로고    scopus 로고
    • Castro, F., Vellido, A., Nebot, A., & Minguillon, J. (2005). Detecting atypical student behaviour on an e-learning system. In I Simposio Nacional de Tecnologas de la Información y las comunicaciones en la Educacion (pp. 153-160). Granada, Spain.
    • Castro, F., Vellido, A., Nebot, A., & Minguillon, J. (2005). Detecting atypical student behaviour on an e-learning system. In I Simposio Nacional de Tecnologas de la Información y las comunicaciones en la Educacion (pp. 153-160). Granada, Spain.
  • 7
    • 34249966007 scopus 로고
    • The CN2 induction algorithm
    • Clark P., and Niblett T. The CN2 induction algorithm. Machine Learning 3 4 (1989) 261-283
    • (1989) Machine Learning , vol.3 , Issue.4 , pp. 261-283
    • Clark, P.1    Niblett, T.2
  • 8
    • 0033317446 scopus 로고    scopus 로고
    • MOGUL: A methodology to obtain genetic fuzzy rule-based systems under the iterative rule learning approach
    • Cordón O., del Jesus M.J., Herrera F., and Lozano M. MOGUL: A methodology to obtain genetic fuzzy rule-based systems under the iterative rule learning approach. International Journal of Intelligent Systems 14 (1999) 1123-1153
    • (1999) International Journal of Intelligent Systems , vol.14 , pp. 1123-1153
    • Cordón, O.1    del Jesus, M.J.2    Herrera, F.3    Lozano, M.4
  • 10
    • 34548285425 scopus 로고    scopus 로고
    • Evolutionary fuzzy rule induction process for subgroup discovery: a case study in marketing
    • del Jesus M.J., González P., Herrera F., and Mesonero M. Evolutionary fuzzy rule induction process for subgroup discovery: a case study in marketing. IEEE Transactions on Fuzzy Systems 15 4 (2007) 578-592
    • (2007) IEEE Transactions on Fuzzy Systems , vol.15 , Issue.4 , pp. 578-592
    • del Jesus, M.J.1    González, P.2    Herrera, F.3    Mesonero, M.4
  • 12
    • 56349105626 scopus 로고    scopus 로고
    • Freyberger, J., Heffernan, N., & Ruiz, C. (2004). Using association rules to guide a search for best fitting transfer models of student learning. In Workshop on analyzing student-tutor interactions logs to improve educational outcomes at ITS conference. Maceio (pp. 1-4). Brazil.
    • Freyberger, J., Heffernan, N., & Ruiz, C. (2004). Using association rules to guide a search for best fitting transfer models of student learning. In Workshop on analyzing student-tutor interactions logs to improve educational outcomes at ITS conference. Maceio (pp. 1-4). Brazil.
  • 13
    • 84864847489 scopus 로고    scopus 로고
    • Gamberger, D. & Lavrac, N. (2002). Descriptive induction through subgroup discovery: A case study in a medical domain. In Proceedings of the 19th international conference on machine learning (ICML 2002) (pp. 163-170). Sydney, Australia.
    • Gamberger, D. & Lavrac, N. (2002). Descriptive induction through subgroup discovery: A case study in a medical domain. In Proceedings of the 19th international conference on machine learning (ICML 2002) (pp. 163-170). Sydney, Australia.
  • 15
    • 0038500689 scopus 로고    scopus 로고
    • Active subgroup mining: A case study in coronary heart disease risk group detection
    • Gamberger D., Lavrac N., and Krstacic G. Active subgroup mining: A case study in coronary heart disease risk group detection. Artificial Intelligence in Medicine 28 1 (2003) 27-57
    • (2003) Artificial Intelligence in Medicine , vol.28 , Issue.1 , pp. 27-57
    • Gamberger, D.1    Lavrac, N.2    Krstacic, G.3
  • 17
    • 0000662737 scopus 로고
    • Search-intensive concept induction
    • Giordana A., and Neri F. Search-intensive concept induction. Evolutionary Computation 3 4 (1995) 375-416
    • (1995) Evolutionary Computation , vol.3 , Issue.4 , pp. 375-416
    • Giordana, A.1    Neri, F.2
  • 18
    • 0033116171 scopus 로고    scopus 로고
    • SLAVE: A genetic learning system based on an iterative approach
    • González A., and Pérez R. SLAVE: A genetic learning system based on an iterative approach. IEEE Transactions on Fuzzy Systems 7 2 (1999) 176-191
    • (1999) IEEE Transactions on Fuzzy Systems , vol.7 , Issue.2 , pp. 176-191
    • González, A.1    Pérez, R.2
  • 20
    • 0003372359 scopus 로고    scopus 로고
    • Mining frequent patterns by pattern-growth: Methodology and implications
    • Han J., and Pei J. Mining frequent patterns by pattern-growth: Methodology and implications. ACM SIGKDD Explorations Newsletter 2 2 (2000) 14-20
    • (2000) ACM SIGKDD Explorations Newsletter , vol.2 , Issue.2 , pp. 14-20
    • Han, J.1    Pei, J.2
  • 22
    • 84857462987 scopus 로고    scopus 로고
    • Jovanoski, V., & Lavrac, N. (2001). Classification rule learning with APRIORI-C. In progress in artificial intelligence knowledge extraction, Multi-agent systems, Logic programming, and Constraint solving: 10th Portuguese Conference on Artificial Intelligence (EPIA'01) (pp. 44-51). Porto, Portugal.
    • Jovanoski, V., & Lavrac, N. (2001). Classification rule learning with APRIORI-C. In progress in artificial intelligence knowledge extraction, Multi-agent systems, Logic programming, and Constraint solving: 10th Portuguese Conference on Artificial Intelligence (EPIA'01) (pp. 44-51). Porto, Portugal.
  • 23
    • 56349096443 scopus 로고    scopus 로고
    • Kavsek, B., Lavrac, N., & Bullas, J. C. (2002). Rule induction for subgroup discovery: a case study in mining UK traffic accident data. In International Multi-Conference on Information Society (IS'02) (pp. 127-130). Ljubljana, Slovenia.
    • Kavsek, B., Lavrac, N., & Bullas, J. C. (2002). Rule induction for subgroup discovery: a case study in mining UK traffic accident data. In International Multi-Conference on Information Society (IS'02) (pp. 127-130). Ljubljana, Slovenia.
  • 24
    • 33747881454 scopus 로고    scopus 로고
    • APRIORI-SD: Adapting association rule learning to subgroup discovery
    • Kavsek B., and Lavrac N. APRIORI-SD: Adapting association rule learning to subgroup discovery. Applied Artificial Intelligence 20 7 (2006) 543-583
    • (2006) Applied Artificial Intelligence , vol.20 , Issue.7 , pp. 543-583
    • Kavsek, B.1    Lavrac, N.2
  • 25
    • 56349172256 scopus 로고    scopus 로고
    • KEEL (2007). Available from .
    • KEEL (2007). Available from .
  • 26
    • 0002192370 scopus 로고    scopus 로고
    • Explora: A multipattern and multistrategy discovery assistant
    • Fayyad U., Piatetsky-Shapiro G., Smyth P., and Uthurusamy R. (Eds), AAAI Press, Menlo Park, California
    • Klösgen W. Explora: A multipattern and multistrategy discovery assistant. In: Fayyad U., Piatetsky-Shapiro G., Smyth P., and Uthurusamy R. (Eds). Advances in knowledge discovery and data mining (1996), AAAI Press, Menlo Park, California 249-271
    • (1996) Advances in knowledge discovery and data mining , pp. 249-271
    • Klösgen, W.1
  • 27
    • 26944470583 scopus 로고    scopus 로고
    • Subgroup discovery
    • Klösgen W., and Zytkow J. (Eds), Oxford University Press, NY
    • Klösgen W. Subgroup discovery. In: Klösgen W., and Zytkow J. (Eds). Handbook of data mining and knowledge discovery (2002), Oxford University Press, NY 354-364
    • (2002) Handbook of data mining and knowledge discovery , pp. 354-364
    • Klösgen, W.1
  • 30
    • 84949207526 scopus 로고    scopus 로고
    • Lavrac, N., Flach, P., & Zupan, B. (1999). Rule evaluation measures: A unifying view. In Proceedings of the 9th international workshop on inductive logic programming (ILP'99) (pp. 174-185).
    • Lavrac, N., Flach, P., & Zupan, B. (1999). Rule evaluation measures: A unifying view. In Proceedings of the 9th international workshop on inductive logic programming (ILP'99) (pp. 174-185).
  • 32
    • 7044269070 scopus 로고    scopus 로고
    • RSD: Relational subgroup discovery through first-order feature construction
    • Proceedings of the international conference on inductive logic programming, Springer, Sydney, Australia
    • Lavrac N., Zelezny F., and Flach P.A. RSD: Relational subgroup discovery through first-order feature construction. Proceedings of the international conference on inductive logic programming. Lecture notes on artificial intelligence 2583 (2003), Springer, Sydney, Australia 149-165
    • (2003) Lecture notes on artificial intelligence , vol.2583 , pp. 149-165
    • Lavrac, N.1    Zelezny, F.2    Flach, P.A.3
  • 33
    • 56349099791 scopus 로고    scopus 로고
    • Liu, B., Hsu, W., & Ma, Y. (1998). Integrating classification and association rule mining. In Proceedings of the international conference on knowledge discovery and data ming (pp. 80-86). NY.
    • Liu, B., Hsu, W., & Ma, Y. (1998). Integrating classification and association rule mining. In Proceedings of the international conference on knowledge discovery and data ming (pp. 80-86). NY.
  • 34
    • 34250758988 scopus 로고    scopus 로고
    • Combining usage, content, and structure data to improve web site recommendation
    • Proceedings of the international conference on e-commerce and web technologies, Springer, Zaragoza, Spain
    • Li J., and Zaïane O. Combining usage, content, and structure data to improve web site recommendation. Proceedings of the international conference on e-commerce and web technologies. Lecture notes on computer science 3182 (2004), Springer, Zaragoza, Spain 305-315
    • (2004) Lecture notes on computer science , vol.3182 , pp. 305-315
    • Li, J.1    Zaïane, O.2
  • 35
    • 56349139631 scopus 로고    scopus 로고
    • Lu, J. (2004). Personalized e-learning material recommender system. In Proceedings of the international conference on information technology for application (pp. 374-379). London, England.
    • Lu, J. (2004). Personalized e-learning material recommender system. In Proceedings of the international conference on information technology for application (pp. 374-379). London, England.
  • 36
    • 56349124282 scopus 로고    scopus 로고
    • Markellou, P., Mousourouli, I., Spiros, S., & Tsakalidis, A. (2005). Using semantic web mining technologies for personalized e-learning experiences. In Proceedings of the web-based education (pp. 461-826). Grindelwald, Switzerland.
    • Markellou, P., Mousourouli, I., Spiros, S., & Tsakalidis, A. (2005). Using semantic web mining technologies for personalized e-learning experiences. In Proceedings of the web-based education (pp. 461-826). Grindelwald, Switzerland.
  • 37
    • 33744784458 scopus 로고    scopus 로고
    • Mining student data captured from a web-based tutoring tool: Initial exploration and results
    • Merceron A., and Yacef K. Mining student data captured from a web-based tutoring tool: Initial exploration and results. Journal of Interactive Learning Research 15 4 (2004) 319-346
    • (2004) Journal of Interactive Learning Research , vol.15 , Issue.4 , pp. 319-346
    • Merceron, A.1    Yacef, K.2
  • 39
    • 21244496778 scopus 로고    scopus 로고
    • Minaei-Bidgoli, B., Tan, P., & Punch, W. (2004). Mining interesting contrast rules for a web-based educational system. In Proceedings of the international conference on machine learning applications (pp. 1-8). Louisville, KY.
    • Minaei-Bidgoli, B., Tan, P., & Punch, W. (2004). Mining interesting contrast rules for a web-based educational system. In Proceedings of the international conference on machine learning applications (pp. 1-8). Louisville, KY.
  • 40
    • 56349115458 scopus 로고    scopus 로고
    • Moodle (2007). Available from .
    • Moodle (2007). Available from .
  • 41
    • 84858816755 scopus 로고    scopus 로고
    • Mor, E., & Minguillon, J. (2004). E-learning personalization based on itineraries and long-term navigational behavior. In Proceedings of the 13th international world wide web conference (pp. 264-265). NY.
    • Mor, E., & Minguillon, J. (2004). E-learning personalization based on itineraries and long-term navigational behavior. In Proceedings of the 13th international world wide web conference (pp. 264-265). NY.
  • 42
    • 0242360768 scopus 로고    scopus 로고
    • Nakada, T., & Kunifuji, S. (2003). Subgroup discovery among personal homepages. In Proceedings of the 6th international conference on discovery science (DS 2003) (pp. 385-392). Sapporo, Japan.
    • Nakada, T., & Kunifuji, S. (2003). Subgroup discovery among personal homepages. In Proceedings of the 6th international conference on discovery science (DS 2003) (pp. 385-392). Sapporo, Japan.
  • 44
    • 56349146184 scopus 로고    scopus 로고
    • Piatetsky-Shapiro, G., & Matheus, C. (1994). The interestingness of deviation. In Proceedings of the AAAI workshop on knowledge discovery in databases (pp. 25-36). Seattle, Washington.
    • Piatetsky-Shapiro, G., & Matheus, C. (1994). The interestingness of deviation. In Proceedings of the AAAI workshop on knowledge discovery in databases (pp. 25-36). Seattle, Washington.
  • 47
    • 33845663518 scopus 로고    scopus 로고
    • Educational data mining: A survey from 1995 to 2005
    • Romero C., and Ventura S. Educational data mining: A survey from 1995 to 2005. Expert Systems with Applications 33 1 (2007) 135-146
    • (2007) Expert Systems with Applications , vol.33 , Issue.1 , pp. 135-146
    • Romero, C.1    Ventura, S.2
  • 49
    • 56349087947 scopus 로고    scopus 로고
    • Talavera, L., & Gaudioso, E. (2004). Mining student data to characterize similar behavior groups in unstructured collaboration spaces. In Workshop on artificial intelligence in CSCL. 16th European conference on artificial intelligence (pp. 17-23). Valencia, Spain.
    • Talavera, L., & Gaudioso, E. (2004). Mining student data to characterize similar behavior groups in unstructured collaboration spaces. In Workshop on artificial intelligence in CSCL. 16th European conference on artificial intelligence (pp. 17-23). Valencia, Spain.
  • 50
    • 56349089617 scopus 로고    scopus 로고
    • Wang, F. (2002). On using data-mining technology for browsing log file analysis in asynchronous learning environment. In Proceedings of the Conference on educational multimedia, hypermedia and telecommunication (pp. 2005-2006). Denver, Colorado.
    • Wang, F. (2002). On using data-mining technology for browsing log file analysis in asynchronous learning environment. In Proceedings of the Conference on educational multimedia, hypermedia and telecommunication (pp. 2005-2006). Denver, Colorado.
  • 54
    • 34548792706 scopus 로고    scopus 로고
    • Wrobel, S. (1997). An algorithm for multi-relational discovery of subgroups. In Proceedings of conference principles of data mining and knowledge discovery (pp. 78-87). London, UK.
    • Wrobel, S. (1997). An algorithm for multi-relational discovery of subgroups. In Proceedings of conference principles of data mining and knowledge discovery (pp. 78-87). London, UK.
  • 55
    • 0016459349 scopus 로고
    • The concept of a linguistic variable and its applications to approximate reasoning, Parts I, II, III
    • pp. 199-249, 301-357, 43-80
    • Zadeh L.A. The concept of a linguistic variable and its applications to approximate reasoning, Parts I, II, III. Information Sciences 8-9 (1975) pp. 199-249, 301-357, 43-80
    • (1975) Information Sciences , vol.8-9
    • Zadeh, L.A.1
  • 56
    • 56349154528 scopus 로고    scopus 로고
    • Zaïane, O., & Luo, J. (2001). Web usage mining for a better web-based learning environment. In Proceedings of conference on advanced technology for education (pp. 60-64). Banff, Alberta.
    • Zaïane, O., & Luo, J. (2001). Web usage mining for a better web-based learning environment. In Proceedings of conference on advanced technology for education (pp. 60-64). Banff, Alberta.


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.