메뉴 건너뛰기




Volumn 16, Issue 7, 2004, Pages 1437-1481

Information geometry of U-Boost and Bregman divergence

Author keywords

[No Author keywords available]

Indexed keywords

ALGORITHM; ARTICLE; ARTIFICIAL INTELLIGENCE; ARTIFICIAL NEURAL NETWORK; COMPARATIVE STUDY; HUMAN; LEARNING; NONLINEAR SYSTEM; PHYSIOLOGY;

EID: 2942627097     PISSN: 08997667     EISSN: None     Source Type: Journal    
DOI: 10.1162/089976604323057452     Document Type: Article
Times cited : (149)

References (27)
  • 2
    • 0029587111 scopus 로고
    • Information geometry of the EM and EM algorithms for neural networks
    • Amari, S. (1995). Information geometry of the EM and EM algorithms for neural networks. Neural Networks, 8(9), 1379-1408.
    • (1995) Neural Networks , vol.8 , Issue.9 , pp. 1379-1408
    • Amari, S.1
  • 4
    • 0027599793 scopus 로고
    • Universal approximation bounds for superpositions of a sigmoidal function
    • Barron, A. R. (1993). Universal approximation bounds for superpositions of a sigmoidal function. IEEE Trans. Information Theory, 39(3), 930-945.
    • (1993) IEEE Trans. Information Theory , vol.39 , Issue.3 , pp. 930-945
    • Barron, A.R.1
  • 8
    • 1542367499 scopus 로고    scopus 로고
    • Recent developments in discriminant analysis from an information geometric point of view
    • Eguchi, S., & Copas, J. B. (2001). Recent developments in discriminant analysis from an information geometric point of view. Journal of the Korean Statistical Society, 30, 247-264.
    • (2001) Journal of the Korean Statistical Society , vol.30 , pp. 247-264
    • Eguchi, S.1    Copas, J.B.2
  • 9
    • 1542277531 scopus 로고    scopus 로고
    • A class of logistic type discriminant functions
    • Eguchi, S., & Copas, J. B. (2002). A class of logistic type discriminant functions. Biometrika, 89, 1-22.
    • (2002) Biometrika , vol.89 , pp. 1-22
    • Eguchi, S.1    Copas, J.B.2
  • 11
    • 58149321460 scopus 로고
    • Boosting a weak learning algorithm by majority
    • Freund, Y. (1995). Boosting a weak learning algorithm by majority. Information and Computation, 121(2), 256-285.
    • (1995) Information and Computation , vol.121 , Issue.2 , pp. 256-285
    • Freund, Y.1
  • 13
    • 0031211090 scopus 로고    scopus 로고
    • A decision-theoretic generalization of on-line learning and an application to boosting
    • Freund, Y., & Schapire, R. E. (1997). A decision-theoretic generalization of on-line learning and an application to boosting. Journal of Computer and System Sciences, 55(1), 119-139.
    • (1997) Journal of Computer and System Sciences , vol.55 , Issue.1 , pp. 119-139
    • Freund, Y.1    Schapire, R.E.2
  • 14
    • 0034164230 scopus 로고    scopus 로고
    • Additive logistic regression: A statistical view of boosting
    • Friedman, J. H., Hastie, T., & Tibshirani, R. (2000). Additive logistic regression: A statistical view of boosting. Annals of Statistics, 28, 337-407.
    • (2000) Annals of Statistics , vol.28 , pp. 337-407
    • Friedman, J.H.1    Hastie, T.2    Tibshirani, R.3
  • 21
    • 0040673441 scopus 로고    scopus 로고
    • Robust blind source separation by beta-divergence
    • Minami, M., & Eguchi, S. (2002). Robust blind source separation by beta-divergence. Neural Computation, 14, 1859-1886.
    • (2002) Neural Computation , vol.14 , pp. 1859-1886
    • Minami, M.1    Eguchi, S.2
  • 22
    • 0030221021 scopus 로고    scopus 로고
    • An integral representation with ridge functions and approximation bounds of three-layered network
    • Murata, N. (1996). An integral representation with ridge functions and approximation bounds of three-layered network. Neural Networks, 9(6), 947-956.
    • (1996) Neural Networks , vol.9 , Issue.6 , pp. 947-956
    • Murata, N.1
  • 23
    • 0028544395 scopus 로고
    • Network information criterion -determining the number of hidden units for an artificial neural network model
    • Murata, N., Yoshizawa, S., & Amari, S. (1994). Network information criterion -determining the number of hidden units for an artificial neural network model. IEEE Trans. Neural Networks, 5(6), 865-872.
    • (1994) IEEE Trans. Neural Networks , vol.5 , Issue.6 , pp. 865-872
    • Murata, N.1    Yoshizawa, S.2    Amari, S.3
  • 24
    • 0025448521 scopus 로고
    • The strength of weak learnability
    • Schapire, R. E. (1990). The strength of weak learnability. Machine Learning, 5, 197-227.
    • (1990) Machine Learning , vol.5 , pp. 197-227
    • Schapire, R.E.1
  • 25
    • 0032280519 scopus 로고    scopus 로고
    • Boosting the margin: A new explanation for the effectiveness of voting methods
    • Schapire, R. E., Freund, Y., Bartlett, P., & Lee, W. S. (1998). Boosting the margin: A new explanation for the effectiveness of voting methods. Annals of Statistics, 26(5), 1651-1686.
    • (1998) Annals of Statistics , vol.26 , Issue.5 , pp. 1651-1686
    • Schapire, R.E.1    Freund, Y.2    Bartlett, P.3    Lee, W.S.4
  • 26
    • 1542291080 scopus 로고    scopus 로고
    • Robustifying AdaBoost by adding the naive error rate
    • Takenouchi, T., & Eguchi, S. (2004). Robustifying AdaBoost by adding the naive error rate. Neural Computation, 16(4), 767-787.
    • (2004) Neural Computation , vol.16 , Issue.4 , pp. 767-787
    • Takenouchi, T.1    Eguchi, S.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.