메뉴 건너뛰기




Volumn 1, Issue 1, 2008, Pages 90-101

Constrained locally weighted clustering

Author keywords

[No Author keywords available]

Indexed keywords

ADAPTIVE COMBINATIONS; CLUSTERING ACCURACY; CONVENTIONAL METHODS; LOCAL CORRELATIONS; MULTIDIMENSIONAL DATA; SQUARED DISTANCES; STATE-OF-THE-ART ALGORITHMS; WEIGHTING VECTOR;

EID: 77952760641     PISSN: None     EISSN: 21508097     Source Type: Conference Proceeding    
DOI: 10.14778/1453856.1453871     Document Type: Article
Times cited : (51)

References (37)
  • 1
    • 85038473305 scopus 로고    scopus 로고
    • http://www.cs.utexas.edu/users/ml/risc/code/.
  • 2
    • 85038476024 scopus 로고    scopus 로고
    • http://www.ews.uiuc.edu/~dengcai2/data/data.html.
  • 4
    • 0039253822 scopus 로고    scopus 로고
    • Finding generalized projected clusters in high dimensional spaces
    • C. C. Aggarwal and P. S. Yu. Finding generalized projected clusters in high dimensional spaces. SIGMOD Rec., 29(2):70-81, 2000.
    • (2000) SIGMOD Rec. , vol.29 , Issue.2 , pp. 70-81
    • Aggarwal, C.C.1    Yu, P.S.2
  • 12
    • 38049127336 scopus 로고    scopus 로고
    • Measuring constraint-set utility for partitional clustering algorithms
    • I. Davidson, K. Wagstaff, and S. Basu. Measuring constraint-set utility for partitional clustering algorithms. In Proceeding of ECML/PKDD, 2006.
    • (2006) Proceeding of ECML/PKDD
    • Davidson, I.1    Wagstaff, K.2    Basu, S.3
  • 21
    • 3543131400 scopus 로고    scopus 로고
    • Interpreting and extending classical agglomerative clustering algorithms using a model-based approach
    • San Francisco, CA, USA, Morgan Kaufmann Publishers Inc
    • S. D. Kamvar, D. Klein, and C. D. Manning. Interpreting and extending classical agglomerative clustering algorithms using a model-based approach. In ICML '02: Proceedings of the Nineteenth International Conference on Machine Learning, pages 283-290, San Francisco, CA, USA, 2002. Morgan Kaufmann Publishers Inc.
    • (2002) ICML '02: Proceedings of the Nineteenth International Conference on Machine Learning , pp. 283-290
    • Kamvar, S.D.1    Klein, D.2    Manning, C.D.3
  • 23
    • 85038477161 scopus 로고    scopus 로고
    • UCI repository of machine learning databases
    • D. Newman, S. Hettich, C. Blake, and C. Merz. UCI repository of machine learning databases, 1998.
    • (1998)
    • Newman, D.1    Hettich, S.2    Blake, C.3    Merz, C.4
  • 25
    • 17044376078 scopus 로고    scopus 로고
    • Subspace clustering for high dimensional data: a review
    • L. Parsons, E. Haque, and H. Liu. Subspace clustering for high dimensional data: a review. SIGKDD Explor. Newsl., 6(1):90-105, 2004.
    • (2004) SIGKDD Explor. Newsl. , vol.6 , Issue.1 , pp. 90-105
    • Parsons, L.1    Haque, E.2    Liu, H.3
  • 26
    • 84950632109 scopus 로고
    • Objective criteria for the evaluation of clustering methods
    • W. M. Rand. Objective criteria for the evaluation of clustering methods. Journal of the American Statistical Association, 66:622-626, 1971.
    • (1971) Journal of the American Statistical Association , vol.66 , pp. 622-626
    • Rand, W.M.1
  • 34
    • 0036538165 scopus 로고    scopus 로고
    • Improving performance of similarity-based clustering by feature weight learning
    • D. S. Yeung and X. Z. Wang. Improving performance of similarity-based clustering by feature weight learning. IEEE Trans. Pattern Anal. Mach. Intell., 24(4):556-561, 2002.
    • (2002) IEEE Trans. Pattern Anal. Mach. Intell. , vol.24 , Issue.4 , pp. 556-561
    • Yeung, D.S.1    Wang, X.Z.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.