메뉴 건너뛰기




Volumn 43, Issue 14, 2011, Pages 1-24

spikeSlabGAM: Bayesian variable selection, model Choice and regularization for generalized additive mixed models in R

Author keywords

MCMC; Normal inverse gamma; P splines; Spike and slab prior

Indexed keywords


EID: 80052986293     PISSN: None     EISSN: 15487660     Source Type: Journal    
DOI: 10.18637/jss.v043.i14     Document Type: Article
Times cited : (51)

References (36)
  • 1
    • 12344304266 scopus 로고    scopus 로고
    • Gene selection using a two-level hierarchical bayesian model
    • Bae K, Mallick BK (2004). Gene Selection Using a Two-Level Hierarchical Bayesian Model. Bioinformatics, 20(18), 3423-3430.
    • (2004) Bioinformatics , vol.20 , Issue.18 , pp. 3423-3430
    • Bae, K.1    Mallick, B.K.2
  • 2
    • 33244482488 scopus 로고    scopus 로고
    • Augmented implicitly restarted lanczos bidiagonalization methods
    • Baglama J, Reichel L (2006). Augmented Implicitly Restarted Lanczos Bidiagonalization Methods. SIAM Journal on Scientific Computing, 27(1), 19-42.
    • (2006) SIAM Journal on Scientific Computing , vol.27 , Issue.1 , pp. 19-42
    • Baglama, J.1    Reichel, L.2
  • 4
    • 27444442456 scopus 로고    scopus 로고
    • BayesX: Analyzing bayesian structural additive re-gression models
    • URL
    • Brezger A, Kneib T, Lang S (2005). BayesX: Analyzing Bayesian Structural Additive Re- gression Models. Journal of Statistical Software, 14(11). URL http://www.jstatsoft.org/v14/i11/.
    • (2005) Journal of Statistical Software , vol.14 , Issue.11
    • Brezger, A.1    Kneib, T.2    Lang, S.3
  • 5
    • 77952811536 scopus 로고    scopus 로고
    • The horseshoe estimator for sparse signals
    • Carvalho CM, Polson NG, Scott JG (2010). The Horseshoe Estimator for Sparse Signals. Biometrika, 97(2), 465-480.
    • (2010) Biometrika , vol.97 , Issue.2 , pp. 465-480
    • Carvalho, C.M.1    Polson, N.G.2    Scott, J.G.3
  • 6
    • 49549109589 scopus 로고    scopus 로고
    • Variable selection and model averaging in semi-parametric overdispersed generalized linear models
    • Cottet R, Kohn RJ, Nott DJ (2008). Variable Selection and Model Averaging in Semi-parametric Overdispersed Generalized Linear Models. Journal of the American Statistical Association, 103(482), 661-671.
    • (2008) Journal of the American Statistical Association , vol.103 , Issue.482 , pp. 661-671
    • Cottet, R.1    Kohn, R.J.2    Nott, D.J.3
  • 7
    • 77953326052 scopus 로고    scopus 로고
    • Bayesian regularisation in structured additive regression: A unifying perspective on shrinkage, smoothing and predictor selection
    • Fahrmeir L, Kneib T, Konrath S (2010). Bayesian Regularisation in Structured Additive Regression: a Unifying Perspective on Shrinkage, Smoothing and Predictor Selection. Statistics and Computing, 20(2), 203-219.
    • (2010) Statistics and Computing , vol.20 , Issue.2 , pp. 203-219
    • Fahrmeir, L.1    Kneib, T.2    Konrath, S.3
  • 8
    • 8644257675 scopus 로고    scopus 로고
    • Penalized structured additive regression for spacetime data: A bayesian perspective
    • Fahrmeir L, Kneib T, Lang S (2004). Penalized Structured Additive Regression for SpaceTime Data: a Bayesian Perspective. Statistica Sinica, 14, 731-761.
    • (2004) Statistica Sinica , vol.14 , pp. 731-761
    • Fahrmeir, L.1    Kneib, T.2    Lang, S.3
  • 10
    • 85013119491 scopus 로고    scopus 로고
    • Bayesian variable selection for random intercept modelling of gaussian and non-gaussian data
    • JM Bernardo, MJ Bayarri, JO Berger, AP Dawid, D Heckerman, AFM Smith, M West (eds.), Oxford Uni-versity Press
    • Frühwirth-Schnatter S, Wagner H (2010). Bayesian Variable Selection for Random Intercept Modelling of Gaussian and Non-Gaussian Data. In JM Bernardo, MJ Bayarri, JO Berger, AP Dawid, D Heckerman, AFM Smith, M West (eds.), Bayesian Statistics 9. Oxford Uni- versity Press.
    • (2010) Bayesian Statistics 9
    • Frühwirth-Schnatter, S.1    Wagner, H.2
  • 13
    • 21144479615 scopus 로고
    • Diagnostics for nonparametric regression models with additive terms
    • Gu C (1992). Diagnostics for Nonparametric Regression Models with Additive Terms. Journal of the American Statistical Association, 87(420), 1051-1058.
    • (1992) Journal of the American Statistical Association , vol.87 , Issue.420 , pp. 1051-1058
    • Gu, C.1
  • 14
    • 0442312140 scopus 로고    scopus 로고
    • Markov chain monte carlo methods for computing bayes factors
    • Han C, Carlin BP (2001). Markov Chain Monte Carlo Methods for Computing Bayes Factors. Journal of the American Statistical Association, 96(455), 1122-1132.
    • (2001) Journal of the American Statistical Association , vol.96 , Issue.455 , pp. 1122-1132
    • Han, C.1    Carlin, B.P.2
  • 16
    • 22944460748 scopus 로고    scopus 로고
    • Spike and slab variable selection: frequentist and bayesian strategies
    • Ishwaran H, Rao JS (2005). Spike and Slab Variable Selection: Frequentist and Bayesian Strategies. The Annals of Statistics, 33(2), 730-773.
    • (2005) The Annals of Statistics , vol.33 , Issue.2 , pp. 730-773
    • Ishwaran, H.1    Rao, J.S.2
  • 20
    • 33847350805 scopus 로고    scopus 로고
    • Component selection and smoothing in multivariate nonparametric regression
    • Lin Y, Zhang HH (2006). Component Selection and Smoothing in Multivariate Nonparametric Regression. The Annals of Statistics, 34(5), 2272-2297.
    • (2006) The Annals of Statistics , vol.34 , Issue.5 , pp. 2272-2297
    • Lin, Y.1    Zhang, H.H.2
  • 21
    • 18244387717 scopus 로고    scopus 로고
    • The EM algorithm - an old folk-song sung to a fast new tune
    • Meng XL, van Dyk D (1997). The EM Algorithm - An Old Folk-Song Sung to a Fast New Tune. Journal of the Royal Statistical Society B, 59(3), 511-567.
    • (1997) Journal of the Royal Statistical Society B , vol.59 , Issue.3 , pp. 511-567
    • Meng, X.L.1    van Dyk, D.2
  • 23
    • 79957438558 scopus 로고    scopus 로고
    • Shrink Globally, Act Locally: Sparse Bayesian Regularization and Prediction
    • JM Bernardo, MJ Bayarri, JO Berger, AP Dawid, D Heckerman, AFM Smith, M West (eds.), Oxford University Press
    • Polson NG, Scott JG (2010). Shrink Globally, Act Locally: Sparse Bayesian Regularization and Prediction. In JM Bernardo, MJ Bayarri, JO Berger, AP Dawid, D Heckerman, AFM Smith, M West (eds.), Bayesian Statistics 9. Oxford University Press.
    • (2010) Bayesian Statistics 9
    • Polson, N.G.1    Scott, J.G.2
  • 24
    • 79961135005 scopus 로고    scopus 로고
    • R Development Core Team, R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0, URL
    • R Development Core Team (2011). R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0, URL http://www.R-project.org/.
    • (2011) R: A Language and Environment For Statistical Computing
  • 25
    • 65349194393 scopus 로고    scopus 로고
    • Variable selection in bayesian smoothing spline ANOVA models: Application to deterministic computer codes
    • Reich BJ, Storlie CB, Bondell HD (2009). Variable Selection in Bayesian Smoothing Spline ANOVA Models: Application to Deterministic Computer Codes. Technometrics, 51(2), 110.
    • (2009) Technometrics , vol.51 , Issue.2 , pp. 110
    • Reich, B.J.1    Storlie, C.B.2    Bondell, H.D.3
  • 27
    • 80052988511 scopus 로고    scopus 로고
    • Normal-Mixture-of-Inverse-Gamma priors for bayesian regularization and model selection in generalized additive models
    • Department of Statistics, LMU München. URL
    • Scheipl F (2010). Normal-Mixture-of-Inverse-Gamma Priors for Bayesian Regularization and Model Selection in Generalized Additive Models. Technical Report 84, Department of Statistics, LMU München. URL http://epub.ub.uni-muenchen.de/11785/.
    • (2010) Technical Report 84
    • Scheipl, F.1
  • 29
    • 13444302396 scopus 로고    scopus 로고
    • R2WinBUGS: A Package for Running WinBUGS from R
    • URL
    • Sturtz S, Ligges U, Gelman A (2005). R2WinBUGS: A Package for Running WinBUGS from R. Journal of Statistical Software, 12(3), 1-16. URL http://www.jstatsoft.org/v12/i03/.
    • (2005) Journal of Statistical Software , vol.12 , Issue.3 , pp. 1-16
    • Sturtz, S.1    Ligges, U.2    Gelman, A.3
  • 32
    • 0041865172 scopus 로고
    • Smoothing spline ANOVA for exponential families, with application to the wisconsin epidemiological study of diabetic retinopathy
    • Wahba G, Wang Y, Gu C, Klein R, Klein B (1995). Smoothing Spline ANOVA for Exponential Families, with Application to the Wisconsin Epidemiological Study of Diabetic Retinopathy. The Annals of Statistics, 23(6), 1865-1895.
    • (1995) The Annals of Statistics , vol.23 , Issue.6 , pp. 1865-1895
    • Wahba, G.1    Wang, Y.2    Gu, C.3    Klein, R.4    Klein, B.5
  • 36
    • 0037352633 scopus 로고    scopus 로고
    • Bayesian variable selection and model averaging in high-dimensional multinomial nonparametric regression
    • Yau P, Kohn R, Wood S (2003). Bayesian Variable Selection and Model Averaging in High-Dimensional Multinomial Nonparametric Regression. Journal of Computational and Graphical Statistics, 12(1), 23-54.
    • (2003) Journal of Computational and Graphical Statistics , vol.12 , Issue.1 , pp. 23-54
    • Yau, P.1    Kohn, R.2    Wood, S.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.