-
1
-
-
12344304266
-
Gene selection using a two-level hierarchical bayesian model
-
Bae K, Mallick BK (2004). Gene Selection Using a Two-Level Hierarchical Bayesian Model. Bioinformatics, 20(18), 3423-3430.
-
(2004)
Bioinformatics
, vol.20
, Issue.18
, pp. 3423-3430
-
-
Bae, K.1
Mallick, B.K.2
-
2
-
-
33244482488
-
Augmented implicitly restarted lanczos bidiagonalization methods
-
Baglama J, Reichel L (2006). Augmented Implicitly Restarted Lanczos Bidiagonalization Methods. SIAM Journal on Scientific Computing, 27(1), 19-42.
-
(2006)
SIAM Journal on Scientific Computing
, vol.27
, Issue.1
, pp. 19-42
-
-
Baglama, J.1
Reichel, L.2
-
4
-
-
27444442456
-
BayesX: Analyzing bayesian structural additive re-gression models
-
URL
-
Brezger A, Kneib T, Lang S (2005). BayesX: Analyzing Bayesian Structural Additive Re- gression Models. Journal of Statistical Software, 14(11). URL http://www.jstatsoft.org/v14/i11/.
-
(2005)
Journal of Statistical Software
, vol.14
, Issue.11
-
-
Brezger, A.1
Kneib, T.2
Lang, S.3
-
5
-
-
77952811536
-
The horseshoe estimator for sparse signals
-
Carvalho CM, Polson NG, Scott JG (2010). The Horseshoe Estimator for Sparse Signals. Biometrika, 97(2), 465-480.
-
(2010)
Biometrika
, vol.97
, Issue.2
, pp. 465-480
-
-
Carvalho, C.M.1
Polson, N.G.2
Scott, J.G.3
-
6
-
-
49549109589
-
Variable selection and model averaging in semi-parametric overdispersed generalized linear models
-
Cottet R, Kohn RJ, Nott DJ (2008). Variable Selection and Model Averaging in Semi-parametric Overdispersed Generalized Linear Models. Journal of the American Statistical Association, 103(482), 661-671.
-
(2008)
Journal of the American Statistical Association
, vol.103
, Issue.482
, pp. 661-671
-
-
Cottet, R.1
Kohn, R.J.2
Nott, D.J.3
-
7
-
-
77953326052
-
Bayesian regularisation in structured additive regression: A unifying perspective on shrinkage, smoothing and predictor selection
-
Fahrmeir L, Kneib T, Konrath S (2010). Bayesian Regularisation in Structured Additive Regression: a Unifying Perspective on Shrinkage, Smoothing and Predictor Selection. Statistics and Computing, 20(2), 203-219.
-
(2010)
Statistics and Computing
, vol.20
, Issue.2
, pp. 203-219
-
-
Fahrmeir, L.1
Kneib, T.2
Konrath, S.3
-
8
-
-
8644257675
-
Penalized structured additive regression for spacetime data: A bayesian perspective
-
Fahrmeir L, Kneib T, Lang S (2004). Penalized Structured Additive Regression for SpaceTime Data: a Bayesian Perspective. Statistica Sinica, 14, 731-761.
-
(2004)
Statistica Sinica
, vol.14
, pp. 731-761
-
-
Fahrmeir, L.1
Kneib, T.2
Lang, S.3
-
10
-
-
85013119491
-
Bayesian variable selection for random intercept modelling of gaussian and non-gaussian data
-
JM Bernardo, MJ Bayarri, JO Berger, AP Dawid, D Heckerman, AFM Smith, M West (eds.), Oxford Uni-versity Press
-
Frühwirth-Schnatter S, Wagner H (2010). Bayesian Variable Selection for Random Intercept Modelling of Gaussian and Non-Gaussian Data. In JM Bernardo, MJ Bayarri, JO Berger, AP Dawid, D Heckerman, AFM Smith, M West (eds.), Bayesian Statistics 9. Oxford Uni- versity Press.
-
(2010)
Bayesian Statistics 9
-
-
Frühwirth-Schnatter, S.1
Wagner, H.2
-
11
-
-
41949124947
-
Using redundant parameterizations to fit hierarchical models
-
Gelman A, Van Dyk DA, Huang Z, Boscardin JW (2008). Using Redundant Parameterizations to Fit Hierarchical Models. Journal of Computational and Graphical Statistics, 17(1),95-122.
-
(2008)
Journal of Computational and Graphical Statistics
, vol.17
, Issue.1
, pp. 95-122
-
-
Gelman, A.1
van Dyk, D.A.2
Huang, Z.3
Boscardin, J.W.4
-
13
-
-
21144479615
-
Diagnostics for nonparametric regression models with additive terms
-
Gu C (1992). Diagnostics for Nonparametric Regression Models with Additive Terms. Journal of the American Statistical Association, 87(420), 1051-1058.
-
(1992)
Journal of the American Statistical Association
, vol.87
, Issue.420
, pp. 1051-1058
-
-
Gu, C.1
-
14
-
-
0442312140
-
Markov chain monte carlo methods for computing bayes factors
-
Han C, Carlin BP (2001). Markov Chain Monte Carlo Methods for Computing Bayes Factors. Journal of the American Statistical Association, 96(455), 1122-1132.
-
(2001)
Journal of the American Statistical Association
, vol.96
, Issue.455
, pp. 1122-1132
-
-
Han, C.1
Carlin, B.P.2
-
15
-
-
84881622205
-
-
R package version 2.0-12, URL
-
Hothorn T, Buehlmann P, Kneib T, Schmid M, Hofner B (2011). Mboost: Model-Based Boosting. R package version 2.0-12, URL http://CRAN.R-project.org/package=mboost.
-
(2011)
Mboost: Model-Based Boosting
-
-
Hothorn, T.1
Buehlmann, P.2
Kneib, T.3
Schmid, M.4
Hofner, B.5
-
16
-
-
22944460748
-
Spike and slab variable selection: frequentist and bayesian strategies
-
Ishwaran H, Rao JS (2005). Spike and Slab Variable Selection: Frequentist and Bayesian Strategies. The Annals of Statistics, 33(2), 730-773.
-
(2005)
The Annals of Statistics
, vol.33
, Issue.2
, pp. 730-773
-
-
Ishwaran, H.1
Rao, J.S.2
-
20
-
-
33847350805
-
Component selection and smoothing in multivariate nonparametric regression
-
Lin Y, Zhang HH (2006). Component Selection and Smoothing in Multivariate Nonparametric Regression. The Annals of Statistics, 34(5), 2272-2297.
-
(2006)
The Annals of Statistics
, vol.34
, Issue.5
, pp. 2272-2297
-
-
Lin, Y.1
Zhang, H.H.2
-
21
-
-
18244387717
-
The EM algorithm - an old folk-song sung to a fast new tune
-
Meng XL, van Dyk D (1997). The EM Algorithm - An Old Folk-Song Sung to a Fast New Tune. Journal of the Royal Statistical Society B, 59(3), 511-567.
-
(1997)
Journal of the Royal Statistical Society B
, vol.59
, Issue.3
, pp. 511-567
-
-
Meng, X.L.1
van Dyk, D.2
-
23
-
-
79957438558
-
Shrink Globally, Act Locally: Sparse Bayesian Regularization and Prediction
-
JM Bernardo, MJ Bayarri, JO Berger, AP Dawid, D Heckerman, AFM Smith, M West (eds.), Oxford University Press
-
Polson NG, Scott JG (2010). Shrink Globally, Act Locally: Sparse Bayesian Regularization and Prediction. In JM Bernardo, MJ Bayarri, JO Berger, AP Dawid, D Heckerman, AFM Smith, M West (eds.), Bayesian Statistics 9. Oxford University Press.
-
(2010)
Bayesian Statistics 9
-
-
Polson, N.G.1
Scott, J.G.2
-
24
-
-
79961135005
-
-
R Development Core Team, R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0, URL
-
R Development Core Team (2011). R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0, URL http://www.R-project.org/.
-
(2011)
R: A Language and Environment For Statistical Computing
-
-
-
25
-
-
65349194393
-
Variable selection in bayesian smoothing spline ANOVA models: Application to deterministic computer codes
-
Reich BJ, Storlie CB, Bondell HD (2009). Variable Selection in Bayesian Smoothing Spline ANOVA Models: Application to Deterministic Computer Codes. Technometrics, 51(2), 110.
-
(2009)
Technometrics
, vol.51
, Issue.2
, pp. 110
-
-
Reich, B.J.1
Storlie, C.B.2
Bondell, H.D.3
-
27
-
-
80052988511
-
Normal-Mixture-of-Inverse-Gamma priors for bayesian regularization and model selection in generalized additive models
-
Department of Statistics, LMU München. URL
-
Scheipl F (2010). Normal-Mixture-of-Inverse-Gamma Priors for Bayesian Regularization and Model Selection in Generalized Additive Models. Technical Report 84, Department of Statistics, LMU München. URL http://epub.ub.uni-muenchen.de/11785/.
-
(2010)
Technical Report 84
-
-
Scheipl, F.1
-
29
-
-
13444302396
-
R2WinBUGS: A Package for Running WinBUGS from R
-
URL
-
Sturtz S, Ligges U, Gelman A (2005). R2WinBUGS: A Package for Running WinBUGS from R. Journal of Statistical Software, 12(3), 1-16. URL http://www.jstatsoft.org/v12/i03/.
-
(2005)
Journal of Statistical Software
, vol.12
, Issue.3
, pp. 1-16
-
-
Sturtz, S.1
Ligges, U.2
Gelman, A.3
-
32
-
-
0041865172
-
Smoothing spline ANOVA for exponential families, with application to the wisconsin epidemiological study of diabetic retinopathy
-
Wahba G, Wang Y, Gu C, Klein R, Klein B (1995). Smoothing Spline ANOVA for Exponential Families, with Application to the Wisconsin Epidemiological Study of Diabetic Retinopathy. The Annals of Statistics, 23(6), 1865-1895.
-
(1995)
The Annals of Statistics
, vol.23
, Issue.6
, pp. 1865-1895
-
-
Wahba, G.1
Wang, Y.2
Gu, C.3
Klein, R.4
Klein, B.5
-
34
-
-
0036427356
-
Model selection in spline nonparametric regression
-
Wood S, Kohn R, Shively T, Jiang W (2002). Model Selection in Spline Nonparametric Regression. Journal of the Royal Statistical Society B, 64(1), 119-139.
-
(2002)
Journal of the Royal Statistical Society B
, vol.64
, Issue.1
, pp. 119-139
-
-
Wood, S.1
Kohn, R.2
Shively, T.3
Jiang, W.4
-
36
-
-
0037352633
-
Bayesian variable selection and model averaging in high-dimensional multinomial nonparametric regression
-
Yau P, Kohn R, Wood S (2003). Bayesian Variable Selection and Model Averaging in High-Dimensional Multinomial Nonparametric Regression. Journal of Computational and Graphical Statistics, 12(1), 23-54.
-
(2003)
Journal of Computational and Graphical Statistics
, vol.12
, Issue.1
, pp. 23-54
-
-
Yau, P.1
Kohn, R.2
Wood, S.3
|