메뉴 건너뛰기




Volumn 2012, Issue , 2012, Pages

Gene expression profiles for predicting metastasis in breast cancer: A cross-study comparison of classification methods

Author keywords

[No Author keywords available]

Indexed keywords

ACCURACY; ARTICLE; BREAST CANCER; CANCER PATIENT; FOLLOW UP; GENE EXPRESSION; GENE EXPRESSION PROFILING; GENETIC ASSOCIATION; HUMAN; MACHINE LEARNING; METASTASIS; MICROARRAY ANALYSIS; SIGNAL NOISE RATIO; SUPPORT VECTOR MACHINE; ARTIFICIAL INTELLIGENCE; BIOLOGICAL MODEL; BREAST TUMOR; COMPARATIVE STUDY; DNA MICROARRAY; FEMALE; GENETIC DATABASE; GENETICS; LYMPH NODE; METHODOLOGY; PATHOLOGY; PREDICTIVE VALUE; REPRODUCIBILITY; STATISTICS;

EID: 84871824961     PISSN: 1537744X     EISSN: 1537744X     Source Type: Journal    
DOI: 10.1100/2012/380495     Document Type: Article
Times cited : (15)

References (50)
  • 1
    • 53549094961 scopus 로고    scopus 로고
    • Gene expression variation to predict 10-year survival in lymph-node-negative breast cancer
    • 2-s2.0-53549094961 10.1186/1471-2407-8-254
    • Karlsson E., Delle U., Danielsson A., Olsson B., Abel F., Karlsson P., Helou K., Gene expression variation to predict 10-year survival in lymph-node-negative breast cancer. BMC Cancer 2008 8, article 254 2-s2.0-53549094961 10.1186/1471-2407-8-254
    • (2008) BMC Cancer , vol.8254
    • Karlsson, E.1    Delle, U.2    Danielsson, A.3    Olsson, B.4    Abel, F.5    Karlsson, P.6    Helou, K.7
  • 2
    • 35348891430 scopus 로고    scopus 로고
    • Network-based classification of breast cancer metastasis
    • DOI 10.1038/msb4100180, PII MSB4100180
    • Chuang H. Y., Lee E., Liu Y. T., Lee D., Ideker T., Network-based classification of breast cancer metastasis. Molecular Systems Biology 2007 3, article 140 2-s2.0-35348891430 10.1038/msb4100180 (Pubitemid 47587026)
    • (2007) Molecular Systems Biology , vol.3 , pp. 140
    • Chuang, H.-Y.1    Lee, E.2    Liu, Y.-T.3    Lee, D.4    Ideker, T.5
  • 3
    • 49649091962 scopus 로고    scopus 로고
    • Feature selection for predicting tumor metastases in microarray experiments using paired design
    • 2-s2.0-49649091962
    • Tan Q., Thomassen M., Kruse T. A., Feature selection for predicting tumor metastases in microarray experiments using paired design. Cancer Informatics 2007 3 133 138 2-s2.0-49649091962
    • (2007) Cancer Informatics , vol.3 , pp. 133-138
    • Tan, Q.1    Thomassen, M.2    Kruse, T.A.3
  • 4
    • 33846827043 scopus 로고    scopus 로고
    • Prediction of metastasis from low-malignant breast cancer by gene expression profiling
    • DOI 10.1002/ijc.22449
    • Thomassen M., Tan Q., Eiriksdottir F., Bak M., Cold S., Kruse T. A., Prediction of metastasis from low-malignant breast cancer by gene expression profiling. International Journal of Cancer 2007 120 5 1070 1075 2-s2.0-33846827043 10.1002/ijc.22449 (Pubitemid 46214307)
    • (2007) International Journal of Cancer , vol.120 , Issue.5 , pp. 1070-1075
    • Thomassen, M.1    Tan, Q.2    Eiriksdottir, F.3    Bak, M.4    Cold, S.5    Kruse, T.A.6
  • 7
    • 50849109505 scopus 로고    scopus 로고
    • Pooling breast cancer datasets has a synergetic effect on classification performance and improves signature stability
    • 2-s2.0-50849109505 10.1186/1471-2164-9-375
    • van Vliet M. H., Fabien R., Horlings H. M., van de Vijver M. J., Reinders M. J. T., Wessels L. F. A., Pooling breast cancer datasets has a synergetic effect on classification performance and improves signature stability. BMC Genomics 2008 9, article 375 2-s2.0-50849109505 10.1186/1471-2164-9-375
    • (2008) BMC Genomics , vol.9375
    • Van Vliet, M.H.1    Fabien, R.2    Horlings, H.M.3    Van De Vijver, M.J.4    Reinders, M.J.T.5    Wessels, L.F.A.6
  • 8
    • 34848855518 scopus 로고    scopus 로고
    • Comparison of gene sets for expression profiling: Prediction of metastasis from low-malignant breast cancer
    • DOI 10.1158/1078-0432.CCR-07-0249
    • Thomassen M., Tan Q., Eiriksdottir F., Bak M., Cold S., Kruse T. A., Comparison of gene sets for expression profiling: prediction of metastasis from low-malignant breast cancer. Clinical Cancer Research 2007 13 18, part 1 5355 5360 2-s2.0-34848855518 10.1158/1078-0432.CCR-07-0249 (Pubitemid 47510360)
    • (2007) Clinical Cancer Research , vol.13 , Issue.18 , pp. 5355-5360
    • Thomassen, M.1    Tan, Q.2    Eiriksdottir, F.3    Bak, M.4    Cold, S.5    Kruse, T.A.6
  • 10
    • 77951630294 scopus 로고    scopus 로고
    • Mixture classification model based on clinical markers for breast cancer prognosis
    • 2-s2.0-77951630294 10.1016/j.artmed.2009.07.008
    • Zeng T., Liu J., Mixture classification model based on clinical markers for breast cancer prognosis. Artificial Intelligence in Medicine 2010 48 2-3 129 137 2-s2.0-77951630294 10.1016/j.artmed.2009.07.008
    • (2010) Artificial Intelligence in Medicine , vol.48 , Issue.2-3 , pp. 129-137
    • Zeng, T.1    Liu, J.2
  • 11
    • 84857836068 scopus 로고    scopus 로고
    • Interactome-transcriptome integration for predicting distant metastasis in breast cancer
    • 2-s2.0-84857836068 10.1093/bioinformatics/bts025
    • Garcia M., Millat-carus R., Bertucci F., Finetti P., Birnbaum D., Bidaut G., Interactome-transcriptome integration for predicting distant metastasis in breast cancer. Bioinformatics 2012 28 5 672 678 2-s2.0-84857836068 10.1093/bioinformatics/bts025
    • (2012) Bioinformatics , vol.28 , Issue.5 , pp. 672-678
    • Garcia, M.1    Millat-Carus, R.2    Bertucci, F.3    Finetti, P.4    Birnbaum, D.5    Bidaut, G.6
  • 12
    • 30644464444 scopus 로고    scopus 로고
    • Gene selection and classification of microarray data using random forest
    • DOI 10.1186/1471-2105-7-3
    • Díaz-Uriarte R., de Andrés A. S., Gene selection and classification of microarray data using random forest. BMC Bioinformatics 2006 7, article 3 2-s2.0-30644464444 10.1186/1471-2105-7-3 (Pubitemid 43085344)
    • (2006) BMC Bioinformatics , vol.7 , pp. 3
    • Diaz-Uriarte, R.1    Alvarez De Andres, S.2
  • 14
    • 56149083834 scopus 로고    scopus 로고
    • Are random forests better than support vector machines for microarray-based cancer classification?
    • 2-s2.0-56149083834
    • Statnikov A., Aliferis C. F., Are random forests better than support vector machines for microarray-based cancer classification? AMIA Annual Symposium Proceedings 2007 686 690 2-s2.0-56149083834
    • (2007) AMIA Annual Symposium Proceedings , pp. 686-690
    • Statnikov, A.1    Aliferis, C.F.2
  • 15
    • 44449145580 scopus 로고    scopus 로고
    • A comparative study of different machine learning methods on microarray gene expression data
    • DOI 10.1186/1471-2164-9-S1-S13
    • Pirooznia M., Yang J. Y., Qu M. Q., Deng Y., A comparative study of different machine learning methods on microarray gene expression data. BMC Genomics 2008 9 supplement 1, article S13 2-s2.0-44449145580 10.1186/1471-2164-9-S1-S13 (Pubitemid 351837303)
    • (2008) BMC Genomics , vol.9 , Issue.SUPPL. 1
    • Pirooznia, M.1    Yang, J.Y.2    Qu, M.Q.3    Deng, Y.4
  • 16
    • 41649108521 scopus 로고    scopus 로고
    • Comparing the characteristics of gene expression profiles derived by univariate and multivariate classification methods
    • 2-s2.0-41649108521
    • Zucknick M., Richardson S., Stronach E. A., Comparing the characteristics of gene expression profiles derived by univariate and multivariate classification methods. Statistical Applications in Genetics and Molecular Biology 2008 7 1, article 7 2-s2.0-41649108521
    • (2008) Statistical Applications in Genetics and Molecular Biology , vol.7 , Issue.1
    • Zucknick, M.1    Richardson, S.2    Stronach, E.A.3
  • 17
    • 48549094895 scopus 로고    scopus 로고
    • A comprehensive comparison of random forests and support vector machines for microarray-based cancer classification
    • 2-s2.0-48549094895 10.1186/1471-2105-9-319
    • Statnikov A., Wang L., Aliferis C. F., A comprehensive comparison of random forests and support vector machines for microarray-based cancer classification. BMC Bioinformatics 2008 9, article 319 2-s2.0-48549094895 10.1186/1471-2105-9-319
    • (2008) BMC Bioinformatics , vol.9319
    • Statnikov, A.1    Wang, L.2    Aliferis, C.F.3
  • 18
    • 80053554605 scopus 로고    scopus 로고
    • Classification of microarrays; Synergistic effects between normalization, gene selection and machine learning
    • 2-s2.0-80053554605 10.1186/1471-2105-12-390
    • Önskog J., Freyhult E., Landfors M., Rydén P., Hvidsten T. R., Classification of microarrays; synergistic effects between normalization, gene selection and machine learning. BMC Bioinformatics 2011 12, article 390 2-s2.0-80053554605 10.1186/1471-2105-12-390
    • (2011) BMC Bioinformatics , vol.12
    • Önskog, J.1    Freyhult, E.2    Landfors, M.3    Rydén, P.4    Hvidsten, T.R.5
  • 19
    • 66749184049 scopus 로고    scopus 로고
    • Effects of sample size on robustness and prediction accuracy of a prognostic gene signature
    • 2-s2.0-66749184049 10.1186/1471-2105-10-147
    • Kim S. Y., Effects of sample size on robustness and prediction accuracy of a prognostic gene signature. BMC Bioinformatics 2009 10, article 147 2-s2.0-66749184049 10.1186/1471-2105-10-147
    • (2009) BMC Bioinformatics , vol.10
    • Kim, S.Y.1
  • 20
    • 78649508797 scopus 로고    scopus 로고
    • Nearest template prediction: A single-sample-based flexible class prediction with confidence assessment
    • 2-s2.0-78649508797 10.1371/journal.pone.0015543 e15543
    • Hoshida Y., Nearest template prediction: a single-sample-based flexible class prediction with confidence assessment. PLoS One 2010 5 11 2-s2.0-78649508797 10.1371/journal.pone.0015543 e15543
    • (2010) PLoS One , vol.5 , Issue.11
    • Hoshida, Y.1
  • 21
    • 80054120281 scopus 로고    scopus 로고
    • Selecting a single model or combining multiple models for microarray-based classifier development? - A comparative analysis based on large and diverse datasets generated from the MAQC-II project
    • supplement 10 S3 2-s2.0-80054120281 10.1186/1471-2105-12-S10-S3
    • Chen M., Shi L., Kelly R., Perkins R., Fang H., Tong W., Selecting a single model or combining multiple models for microarray-based classifier development?-a comparative analysis based on large and diverse datasets generated from the MAQC-II project. BMC Bioinformatics 2011 12 supplement 10 S3 2-s2.0-80054120281 10.1186/1471-2105-12-S10-S3
    • (2011) BMC Bioinformatics , vol.12
    • Chen, M.1    Shi, L.2    Kelly, R.3    Perkins, R.4    Fang, H.5    Tong, W.6
  • 22
    • 64549112122 scopus 로고    scopus 로고
    • Outcome prediction based on microarray analysis: A critical perspective on methods
    • 2-s2.0-64549112122 10.1186/1471-2105-10-53
    • Zervakis M., Blazadonakis M. E., Tsiliki G., Danilatou V., Tsiknakis M., Kafetzopoulos D., Outcome prediction based on microarray analysis: a critical perspective on methods. BMC Bioinformatics 2009 10, article 53 2-s2.0-64549112122 10.1186/1471-2105-10-53
    • (2009) BMC Bioinformatics , vol.1053
    • Zervakis, M.1    Blazadonakis, M.E.2    Tsiliki, G.3    Danilatou, V.4    Tsiknakis, M.5    Kafetzopoulos, D.6
  • 33
    • 84859743404 scopus 로고    scopus 로고
    • Combining multiple approaches for gene microarray classification
    • 2-s2.0-79952826133 10.1093/bioinformatics/bts108
    • Nanni L., Brahnam S., Lumini A., Combining multiple approaches for gene microarray classification. Bioinformatics 2012 28 8 1151 1157 2-s2.0-79952826133 10.1093/bioinformatics/bts108
    • (2012) Bioinformatics , vol.28 , Issue.8 , pp. 1151-1157
    • Nanni, L.1    Brahnam, S.2    Lumini, A.3
  • 34
    • 60949083872 scopus 로고    scopus 로고
    • Gene expression meta-analysis identifies metastatic pathways and transcription factors in breast cancer
    • 2-s2.0-60949083872 10.1186/1471-2407-8-394
    • Thomassen M., Tan Q., Kruse T. A., Gene expression meta-analysis identifies metastatic pathways and transcription factors in breast cancer. BMC Cancer 2008 8, article 394 2-s2.0-60949083872 10.1186/1471-2407-8-394
    • (2008) BMC Cancer , vol.8394
    • Thomassen, M.1    Tan, Q.2    Kruse, T.A.3
  • 35
    • 58149229504 scopus 로고    scopus 로고
    • Gene expression meta-analysis identifies chromosomal regions and candidate genes involved in breast cancer metastasis
    • 2-s2.0-58149229504 10.1007/s10549-008-9927-2
    • Thomassen M., Tan Q., Kruse T. A., Gene expression meta-analysis identifies chromosomal regions and candidate genes involved in breast cancer metastasis. Breast Cancer Research and Treatment 2009 113 2 239 249 2-s2.0-58149229504 10.1007/s10549-008-9927-2
    • (2009) Breast Cancer Research and Treatment , vol.113 , Issue.2 , pp. 239-249
    • Thomassen, M.1    Tan, Q.2    Kruse, T.A.3
  • 36
    • 0035478854 scopus 로고    scopus 로고
    • Random forests
    • DOI 10.1023/A:1010933404324
    • Breiman L., Random forests. Machine Learning 2001 45 1 5 32 2-s2.0-0035478854 10.1023/A:1010933404324 (Pubitemid 32933532)
    • (2001) Machine Learning , vol.45 , Issue.1 , pp. 5-32
    • Breiman, L.1
  • 39
    • 33846978784 scopus 로고    scopus 로고
    • Critical review of published microarray studies for cancer outcome and guidelines on statistical analysis and reporting
    • 2-s2.0-33846978784 10.1093/jnci/djk018
    • Dupuy A., Simon R. M., Critical review of published microarray studies for cancer outcome and guidelines on statistical analysis and reporting. Journal of the National Cancer Institute 2007 99 2 147 157 2-s2.0-33846978784 10.1093/jnci/djk018
    • (2007) Journal of the National Cancer Institute , vol.99 , Issue.2 , pp. 147-157
    • Dupuy, A.1    Simon, R.M.2
  • 40
    • 52249124532 scopus 로고    scopus 로고
    • Tumor classification ranking from microarray data
    • supplement 2, article S21 2-s2.0-52249124532 10.1186/1471-2164-9-S2-S21
    • Hewett R., Kijsanayothin P., Tumor classification ranking from microarray data. BMC Genomics 2008 9 supplement 2, article S21 2-s2.0-52249124532 10.1186/1471-2164-9-S2-S21
    • (2008) BMC Genomics , vol.9
    • Hewett, R.1    Kijsanayothin, P.2
  • 42
    • 33646181069 scopus 로고    scopus 로고
    • A novel ensemble machine learning for robust microarray data classification
    • 2-s2.0-33646181069 10.1016/j.compbiomed.2005.04.001
    • Peng Y., A novel ensemble machine learning for robust microarray data classification. Computers in Biology and Medicine 2006 36 6 553 573 2-s2.0-33646181069 10.1016/j.compbiomed.2005.04.001
    • (2006) Computers in Biology and Medicine , vol.36 , Issue.6 , pp. 553-573
    • Peng, Y.1
  • 43
    • 79955874021 scopus 로고    scopus 로고
    • To aggregate or not to aggregate high-dimensional classifiers
    • 2-s2.0-79955874021 10.1186/1471-2105-12-153
    • Xu C. J., Hoefsloot H. C. J., Smilde A. K., To aggregate or not to aggregate high-dimensional classifiers. BMC Bioinformatics 2011 12, article 153 2-s2.0-79955874021 10.1186/1471-2105-12-153
    • (2011) BMC Bioinformatics , vol.12
    • Xu, C.J.1    Hoefsloot, H.C.J.2    Smilde, A.K.3
  • 44
    • 79957793120 scopus 로고    scopus 로고
    • A jackknife and voting classifier approach to feature selection and classification
    • 2-s2.0-79957793120 10.4137/CIN.S7111
    • Taylor S. L., Kim K., A jackknife and voting classifier approach to feature selection and classification. Cancer Informatics 2011 10 133 147 2-s2.0-79957793120 10.4137/CIN.S7111
    • (2011) Cancer Informatics , vol.10 , pp. 133-147
    • Taylor, S.L.1    Kim, K.2
  • 45
    • 15844413351 scopus 로고    scopus 로고
    • A comprehensive evaluation of multicategory classification methods for microarray gene expression cancer diagnosis
    • DOI 10.1093/bioinformatics/bti033
    • Statnikov A., Aliferis C. F., Tsamardinos I., Hardin D., Levy S., A comprehensive evaluation of multicategory classification methods for microarray gene expression cancer diagnosis. Bioinformatics 2005 21 5 631 643 2-s2.0-15844413351 10.1093/bioinformatics/bti033 (Pubitemid 40424789)
    • (2005) Bioinformatics , vol.21 , Issue.5 , pp. 631-643
    • Statnikov, A.1    Aliferis, C.F.2    Tsamardinos, I.3    Hardin, D.4    Levy, S.5
  • 46
    • 2942596534 scopus 로고    scopus 로고
    • Ensemble machine learning on gene expression data for cancer classification
    • supplement 3 2-s2.0-2942596534
    • Tan A. C., Gilbert D., Ensemble machine learning on gene expression data for cancer classification. Appl Bioinformatics 2003 2 supplement 3 S75 S83 2-s2.0-2942596534
    • (2003) Appl Bioinformatics , vol.2
    • Tan, A.C.1    Gilbert, D.2
  • 47
    • 84871839544 scopus 로고    scopus 로고
    • Gene expression based leukemia sub-classification using committee neural networks
    • Sewak M. S., Reddy N. P., Duan Z. H., Gene expression based leukemia sub-classification using committee neural networks. Bioinformatics and Biology Insights 2009 3 89 98
    • (2009) Bioinformatics and Biology Insights , vol.3 , pp. 89-98
    • Sewak, M.S.1    Reddy, N.P.2    Duan, Z.H.3
  • 48
    • 0030211964 scopus 로고    scopus 로고
    • Bagging predictors
    • Breiman L., Bagging predictors. Machine Learning 1996 24 2 123 140 2-s2.0-0030211964 (Pubitemid 126724382)
    • (1996) Machine Learning , vol.24 , Issue.2 , pp. 123-140
    • Breiman, L.1
  • 49
    • 74049095106 scopus 로고    scopus 로고
    • Accurate molecular classification of cancer using simple rules
    • 2-s2.0-74049095106
    • Wang X., Gotoh O., Accurate molecular classification of cancer using simple rules. BMC Medical Genomics 2009 2, article 64 2-s2.0-74049095106
    • (2009) BMC Medical Genomics , vol.264
    • Wang, X.1    Gotoh, O.2
  • 50
    • 79957979361 scopus 로고    scopus 로고
    • Performance comparison of SLFN training algorithms for DNA microarray classification
    • 2-s2.0-79957979361 10.1007/978-1-4419-7046-6-14
    • Huynh H. T., Kim J. J., Won Y., Performance comparison of SLFN training algorithms for DNA microarray classification. Advances in Experimental Medicine and Biology 2011 696 135 143 2-s2.0-79957979361 10.1007/978-1-4419-7046-6-14
    • (2011) Advances in Experimental Medicine and Biology , vol.696 , pp. 135-143
    • Huynh, H.T.1    Kim, J.J.2    Won, Y.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.