메뉴 건너뛰기




Volumn 10, Issue , 2011, Pages 133-147

A jackknife and voting classifier approach to feature selection and classification

Author keywords

Classification; Feature selection; Gene expression; Jackknife; Voting classifier

Indexed keywords

BIOLOGICAL MARKER; PROTEIN;

EID: 79957793120     PISSN: 11769351     EISSN: 11769351     Source Type: Journal    
DOI: 10.4137/CIN.S7111     Document Type: Article
Times cited : (15)

References (26)
  • 1
    • 35748932917 scopus 로고    scopus 로고
    • Larranaga. A review of feature selection techniques in bioinformatics
    • Saeys Y, Inza I, Larranaga. A review of feature selection techniques in bioinformatics. Bioinformatics. 2007;23:2507-17.
    • (2007) Bioinformatics , vol.23 , pp. 2507-2517
    • Saeys, Y.1    Inza, I.2
  • 2
    • 27144489164 scopus 로고    scopus 로고
    • A tutorial on support vector machines for pattern recognition
    • Burges CJC. A tutorial on support vector machines for pattern recognition. Data Mining and Knowledge Discovery. 1998;2:121-67.
    • (1998) Data Mining and Knowledge Discovery , vol.2 , pp. 121-167
    • Burges, C.J.C.1
  • 4
    • 30644464444 scopus 로고    scopus 로고
    • Gene selection and classification of microarray data using random forest
    • Díaz-Uriarte R, Alvarez de Andrés S. Gene selection and classification of microarray data using random forest. BMC Bioinformatics. 2006;7:3.
    • (2006) BMC Bioinformatics , vol.7 , pp. 3
    • Díaz-Uriarte, R.1    Alvarez de Andrés, S.2
  • 6
    • 0036161259 scopus 로고    scopus 로고
    • Gene selection for cancer classification using support vector machines
    • Guyon I, Weston J, Barnhill S. Gene selection for cancer classification using support vector machines. Machine Learning. 2002;46:389-422.
    • (2002) Machine Learning , vol.46 , pp. 389-422
    • Guyon, I.1    Weston, J.2    Barnhill, S.3
  • 7
    • 0141738784 scopus 로고    scopus 로고
    • Comparison of statistical methods for classification of ovarian cancer using mass spectrometry data
    • Wu B, Abbott T, Fishman D, McMurray W, Mor G, Stone K, et al. Comparison of statistical methods for classification of ovarian cancer using mass spectrometry data. Bioinformatics. 2003;19:1636-43.
    • (2003) Bioinformatics , vol.19 , pp. 1636-1643
    • Wu, B.1    Abbott, T.2    Fishman, D.3    McMurray, W.4    Mor, G.5    Stone, K.6
  • 8
    • 25144482428 scopus 로고    scopus 로고
    • Proteomic mass spectra classification using decision tree based ensemble methods
    • Geurts P, Fillet M, de Seny D, Meuwis M-A, Malaise M, et al. Proteomic mass spectra classification using decision tree based ensemble methods. Bioinformatics. 2005;21:3138-45.
    • (2005) Bioinformatics , vol.21 , pp. 3138-3145
    • Geurts, P.1    Fillet, M.2    de Seny, D.3    Meuwis, M.-A.4    Malaise, M.5
  • 9
    • 46149101211 scopus 로고    scopus 로고
    • Classification of premalignant pancreatic cancer massspectrometry data using decision tree ensembles
    • Ge G, Wong GW. Classification of premalignant pancreatic cancer massspectrometry data using decision tree ensembles. BMC Bioinformatics. 2008;9:275.
    • (2008) BMC Bioinformatics , vol.9 , pp. 275
    • Ge, G.1    Wong, G.W.2
  • 10
    • 67650527108 scopus 로고    scopus 로고
    • Comparison of feature selection and classification for MALDI-MS data
    • Liu Q, Sung AH, Qiao M, Chen Z, Yang JY, et al. Comparison of feature selection and classification for MALDI-MS data. BMC Genomics. 2009;10(Suppl 1):S3.
    • (2009) BMC Genomics , vol.10 , Issue.SUPPL. 1
    • Liu, Q.1    Sung, A.H.2    Qiao, M.3    Chen, Z.4    Yang, J.Y.5
  • 11
    • 70349731767 scopus 로고    scopus 로고
    • Ovarian cancer detection from metabolomic liquid chromatography/mass spectrometry data by support vector machines
    • Guan W, Zhou M, Hampton CY, Benigno BB, Walker LD, et al. Ovarian cancer detection from metabolomic liquid chromatography/mass spectrometry data by support vector machines. BMC Bioinformatics. 2009;10: 259.
    • (2009) BMC Bioinformatics , vol.10 , pp. 259
    • Guan, W.1    Zhou, M.2    Hampton, C.Y.3    Benigno, B.B.4    Walker, L.D.5
  • 12
    • 33646377650 scopus 로고    scopus 로고
    • Recursive SVM feature selection and sample classification for mass-spectrometry and microarray data
    • Zhang X, Lu X, Shi Q, Xu X, Leung HE, et al. Recursive SVM feature selection and sample classification for mass-spectrometry and microarray data. BMC Bioinformatics. 2002;7:197.
    • (2002) BMC Bioinformatics , vol.7 , pp. 197
    • Zhang, X.1    Lu, X.2    Shi, Q.3    Xu, X.4    Leung, H.E.5
  • 13
    • 0033569406 scopus 로고    scopus 로고
    • Molecular classification of cancer: Class discovery and class prediction by gene expression monitoring
    • Golub TR, Slonin DK, Tamayo P, et al. Molecular classification of cancer: Class discovery and class prediction by gene expression monitoring. Science. 1999;286:531-7.
    • (1999) Science , vol.286 , pp. 531-537
    • Golub, T.R.1    Slonin, D.K.2    Tamayo, P.3
  • 14
    • 0036489046 scopus 로고    scopus 로고
    • Comparison of discrimination methods for the classification of tumors using gene expression data
    • Dudroit S, Fridlyand J, Speed TP. Comparison of discrimination methods for the classification of tumors using gene expression data. American Statistical Association. 2002;97:77-87.
    • (2002) American Statistical Association , vol.97 , pp. 77-87
    • Dudroit, S.1    Fridlyand, J.2    Speed, T.P.3
  • 16
    • 0034794796 scopus 로고    scopus 로고
    • Expression profiling of medulloblastoma: PDGFR and the RAW/MAPK pathway as therapeutic targets for metsastic disease
    • MacDonald TJ, Brown KM, LeFleur B, Peterson K, Lawlor C, et al. Expression profiling of medulloblastoma: PDGFR and the RAW/MAPK pathway as therapeutic targets for metsastic disease. Nature Genetics. 2001;29: 143-52.
    • (2001) Nature Genetics , vol.29 , pp. 143-152
    • Macdonald, T.J.1    Brown, K.M.2    Lefleur, B.3    Peterson, K.4    Lawlor, C.5
  • 17
    • 13444249852 scopus 로고    scopus 로고
    • Prediction of cancer outcome with microarrays: A multiple random validation strategy
    • Michelis S, Koscielny S, Hill C. Prediction of cancer outcome with microarrays: a multiple random validation strategy. Lancet. 2005;365:488-92.
    • (2005) Lancet , vol.365 , pp. 488-492
    • Michelis, S.1    Koscielny, S.2    Hill, C.3
  • 18
    • 69249159556 scopus 로고    scopus 로고
    • Development of biomarker classifiers from high-dimensional data
    • Baek S, Tsai C-A, Chen JJ. Development of biomarker classifiers from high-dimensional data. Briefings in Bioinformatics. 2009;10:537-46.
    • (2009) Briefings In Bioinformatics , vol.10 , pp. 537-546
    • Baek, S.1    Tsai, C.-A.2    Chen, J.J.3
  • 19
    • 0036735386 scopus 로고    scopus 로고
    • Translation of microarray data into clinically relevant cancer diagnostic tests using gene expression ratios in lung cancer and mesothelioma
    • Gordan GJ, Jensen RV, Hsiao L, Gullans SR, Blumenstock JE, et al. Translation of microarray data into clinically relevant cancer diagnostic tests using gene expression ratios in lung cancer and mesothelioma. Cancer Research. 2002;62:4963-7.
    • (2002) Cancer Research , vol.62 , pp. 4963-4967
    • Gordan, G.J.1    Jensen, R.V.2    Hsiao, L.3    Gullans, S.R.4    Blumenstock, J.E.5
  • 21
    • 0345040873 scopus 로고    scopus 로고
    • Classification and Regression by random Forest
    • Liaw A, Wiener M. Classification and Regression by random Forest. R News. 2002;2:18-22.
    • (2002) R News , vol.2 , pp. 18-22
    • Liaw, A.1    Wiener, M.2
  • 22
    • 79951480123 scopus 로고    scopus 로고
    • R Development Core Team. R Foundation for Statistical Computing, Vienna, Austria; ISBN 3-900051-07-0, URL
    • R Development Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria; 2010, ISBN 3-900051-07-0, URL http://www.R-project.org.
    • (2010) R: A language and environment for statistical computing
  • 24
    • 84950461478 scopus 로고
    • Estimating the error rate of a prediction rule: Improvements on cross-validation
    • Efron B. Estimating the error rate of a prediction rule: improvements on cross-validation. Journal of the American Statistical Association. 1983;78: 316-31.
    • (1983) Journal of the American Statistical Association , vol.78 , pp. 316-331
    • Efron, B.1
  • 25
    • 77954168391 scopus 로고    scopus 로고
    • Effect of training-sample size and classification difficulty on the accuracy of genomic predictors
    • Popovici V, Chen W, Gallas BG, Hatzis C, Shi W, et al. Effect of training-sample size and classification difficulty on the accuracy of genomic predictors. Breast Cancer Research. 2010;12:R5.
    • (2010) Breast Cancer Research , vol.12
    • Popovici, V.1    Chen, W.2    Gallas, B.G.3    Hatzis, C.4    Shi, W.5
  • 26
    • 33749030973 scopus 로고    scopus 로고
    • Identifying genes that contribute most to good classification in microarrays
    • Baker SG, Kramer BS. Identifying genes that contribute most to good classification in microarrays. BMC Bioinformatics. 2006;7:407.
    • (2006) BMC Bioinformatics , vol.7 , pp. 407
    • Baker, S.G.1    Kramer, B.S.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.