메뉴 건너뛰기




Volumn 38, Issue 1, 2013, Pages 45-57

Accelerated max-margin multiple kernel learning

Author keywords

Kernel learning; Kernel methods; Large margin learning; Pattern classification

Indexed keywords

BINARY CLASSIFICATION; CLASSIFICATION ALGORITHM; CLASSIFICATION PERFORMANCE; CONVEX HULL; GENERALIZATION ERROR; KERNEL FAMILY; KERNEL FUNCTION; KERNEL LEARNING; KERNEL LEARNING METHODS; KERNEL MACHINE; KERNEL MATRICES; KERNEL METHODS; LARGE-MARGIN LEARNING; LEARNING THE KERNEL; LEARNING TIME; MULTIPLE KERNEL LEARNING; PARZEN WINDOW CLASSIFIERS; PATTERN CLASSIFICATION PROBLEMS; REAL DATA SETS; SEMI-SUPERVISED; UPPER BOUND;

EID: 84871812532     PISSN: 0924669X     EISSN: None     Source Type: Journal    
DOI: 10.1007/s10489-012-0356-x     Document Type: Article
Times cited : (8)

References (36)
  • 3
    • 0030145852 scopus 로고    scopus 로고
    • Weighted Parzen windows for pattern classification
    • 10.1109/34.494647
    • Babich GA, Camps OI (1996) Weighted Parzen windows for pattern classification. IEEE Trans Pattern Anal Mach Intell 18(5):567-570
    • (1996) IEEE Trans Pattern Anal Mach Intell , vol.18 , Issue.5 , pp. 567-570
    • Babich, G.A.1    Camps, O.I.2
  • 4
    • 84858766876 scopus 로고    scopus 로고
    • Exploring large feature spaces with hierarchical multiple kernel learning
    • Bach F (2008) Exploring large feature spaces with hierarchical multiple kernel learning. In: Neural information processing systems, pp 105-112
    • (2008) Neural Information Processing Systems , pp. 105-112
    • Bach, F.1
  • 6
    • 33750729556 scopus 로고    scopus 로고
    • Manifold regularization: A geometric framework for learning from labeled and unlabeled examples
    • 2274444 1222.68144
    • Belkin M, Niyogi P, Sindhwani V (2006) Manifold regularization: a geometric framework for learning from labeled and unlabeled examples. J Mach Learn Res 7:2399-2434
    • (2006) J Mach Learn Res , vol.7 , pp. 2399-2434
    • Belkin, M.1    Niyogi, P.2    Sindhwani, V.3
  • 8
    • 12244300139 scopus 로고    scopus 로고
    • Column-generation boosting methods for mixture of kernels
    • Bi J, Zhang T, Bennet KP (2004) Column-generation boosting methods for mixture of kernels. In: SIGKDD
    • (2004) SIGKDD
    • Bi, J.1    Zhang, T.2    Bennet, K.P.3
  • 9
    • 49049106528 scopus 로고    scopus 로고
    • Kernel price pattern trading
    • 10.1007/s10489-007-0054-2
    • Cañete A, Constanzo J, Salinas L (2008) Kernel price pattern trading. Appl Intell 29(2):152-156
    • (2008) Appl Intell , vol.29 , Issue.2 , pp. 152-156
    • Cañete, A.1    Constanzo, J.2    Salinas, L.3
  • 11
    • 0036161257 scopus 로고    scopus 로고
    • Linear programming boosting via column generation
    • 10.1023/A:1012470815092 0998.68105
    • Demiriz A, Bennett KP, Shawe-Taylor J (2002) Linear programming boosting via column generation. Mach Learn 46(1-3):225-254
    • (2002) Mach Learn , vol.46 , Issue.1-3 , pp. 225-254
    • Demiriz, A.1    Bennett, K.P.2    Shawe-Taylor, J.3
  • 12
    • 84862152671 scopus 로고    scopus 로고
    • Improving classification performance of support vector machine by genetically optimising kernel shape and hyper-parameters
    • doi: 10.1007/s10489-010-0260-1
    • Dioşan L, Rogozan A, Pecuchet JP (2010) Improving classification performance of support vector machine by genetically optimising kernel shape and hyper-parameters. Applied Intelligence, 1-15. doi: 10.1007/s10489-010-0260-1
    • (2010) Applied Intelligence , pp. 1-15
    • Dioşan, L.1    Rogozan, A.2    Pecuchet, J.P.3
  • 14
    • 21244501361 scopus 로고    scopus 로고
    • A theoretical and experimental analysis of linear combiners for multiple classifier systems
    • 10.1109/TPAMI.2005.109
    • Fumera G, Roli F (2005) A theoretical and experimental analysis of linear combiners for multiple classifier systems. IEEE Trans Pattern Anal Mach Intell 27(6):942-956
    • (2005) IEEE Trans Pattern Anal Mach Intell , vol.27 , Issue.6 , pp. 942-956
    • Fumera, G.1    Roli, F.2
  • 17
    • 0036933407 scopus 로고    scopus 로고
    • Input feature selection by mutual information based on Parzen window
    • 10.1109/TPAMI.2002.1114861
    • Kwak N, Choi CH (2002) Input feature selection by mutual information based on Parzen window. IEEE Trans Pattern Anal Mach Intell 24(12):1667-1671
    • (2002) IEEE Trans Pattern Anal Mach Intell , vol.24 , Issue.12 , pp. 1667-1671
    • Kwak, N.1    Choi, C.H.2
  • 19
    • 84862586717 scopus 로고    scopus 로고
    • An enhanced support vector machine classification framework by using Euclidean distance function for text document categorization
    • 10.1007/s10489-011-0314-z
    • Lee LH, Wan CH, Rajkumar R, Isa D (2011) An enhanced support vector machine classification framework by using Euclidean distance function for text document categorization. Appl Intell. doi: 10.1007/s10489-011-0314-z
    • (2011) Appl Intell
    • Lee, L.H.1    Wan, C.H.2    Rajkumar, R.3    Isa, D.4
  • 20
    • 24144473856 scopus 로고    scopus 로고
    • Ensemble of Parzen window classifiers for on-line signature verification
    • 10.1016/j.neucom.2005.05.004
    • Nanni L, Lumini A (2005) Ensemble of Parzen window classifiers for on-line signature verification. Neurocomputing 68:217-224
    • (2005) Neurocomputing , vol.68 , pp. 217-224
    • Nanni, L.1    Lumini, A.2
  • 22
    • 0032280519 scopus 로고    scopus 로고
    • Boosting the margin: A new explanation for the effectiveness of voting methods
    • 1673273 10.1214/aos/1024691352 0929.62069
    • Schapire RE, Freund Y, Bartlett P, Lee WS (1998) Boosting the margin: a new explanation for the effectiveness of voting methods. Ann Stat 26(5):1651-1686
    • (1998) Ann Stat , vol.26 , Issue.5 , pp. 1651-1686
    • Schapire, R.E.1    Freund, Y.2    Bartlett, P.3    Lee, W.S.4
  • 23
  • 27
    • 68149157330 scopus 로고    scopus 로고
    • Locality kernels for sequential data and their applications to parse ranking
    • 10.1007/s10489-008-0114-2
    • Tsivtsivadze E, Pahikkala T, Boberg J, Salakoski T (2009) Locality kernels for sequential data and their applications to parse ranking. Appl Intell 31(1):81-88
    • (2009) Appl Intell , vol.31 , Issue.1 , pp. 81-88
    • Tsivtsivadze, E.1    Pahikkala, T.2    Boberg, J.3    Salakoski, T.4
  • 28
    • 3142743708 scopus 로고    scopus 로고
    • Solving semidefinite-quadratic-linear programs using SDPT3
    • 1976479 10.1007/s10107-002-0347-5
    • Tutuncu RH, Toh KC, Todd MJ (2003) Solving semidefinite-quadratic-linear programs using SDPT3. Math Program, Ser A 95:189-217
    • (2003) Math Program, ser A , vol.95 , pp. 189-217
    • Tutuncu, R.H.1    Toh, K.C.2    Todd, M.J.3
  • 30
    • 62349101435 scopus 로고    scopus 로고
    • Gaussian kernel optimization for pattern classification
    • 10.1016/j.patcog.2008.11.024 1183.68552
    • Wang J, Lu H, Plataniotis K, Lu J (2009) Gaussian kernel optimization for pattern classification. Pattern Recognit 42(7):1237-1247
    • (2009) Pattern Recognit , vol.42 , Issue.7 , pp. 1237-1247
    • Wang, J.1    Lu, H.2    Plataniotis, K.3    Lu, J.4
  • 34
    • 27344455216 scopus 로고    scopus 로고
    • Learning the kernel parameters in kernel minimum distance classifier
    • 10.1016/j.patcog.2005.08.001 1079.68616
    • Zhang D, Chen S, Zhou ZH (2006) Learning the kernel parameters in kernel minimum distance classifier. Pattern Recognit 39(1):133-135
    • (2006) Pattern Recognit , vol.39 , Issue.1 , pp. 133-135
    • Zhang, D.1    Chen, S.2    Zhou, Z.H.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.