-
1
-
-
84871748570
-
-
US organ and tissue transplant cost estimates and discussion. Milliman Research Report Available online
-
Bentley, T. S., Hanson, S. G., US organ and tissue transplant cost estimates and discussion. Milliman Research Report 2011. Available online: http://publications.milliman.com/research/health-rr/pdfs/2011-us-organ-tissue.pdf.
-
(2011)
-
-
Bentley, T.S.1
Hanson, S.G.2
-
2
-
-
67650590068
-
Tissue engineering with nano-fibrous scaffolds.
-
Smith, L. A., Liu, X. H., Ma, P. X., Tissue engineering with nano-fibrous scaffolds. Soft Matter 2008, 4, 2144-2149.
-
(2008)
Soft Matter
, vol.4
, pp. 2144-2149
-
-
Smith, L.A.1
Liu, X.H.2
Ma, P.X.3
-
3
-
-
0027595948
-
Tissue Engineering.
-
Langer, R., Vacanti, J. P., Tissue Engineering. Science 1993, 260, 920-926.
-
(1993)
Science
, vol.260
, pp. 920-926
-
-
Langer, R.1
Vacanti, J.P.2
-
4
-
-
0042358985
-
Cell culture: Biology's new dimension.
-
Abbott, A., Cell culture: Biology's new dimension. Nature 2003, 424, 870-872.
-
(2003)
Nature
, vol.424
, pp. 870-872
-
-
Abbott, A.1
-
5
-
-
77952946112
-
Nanotechnologies in regenerative medicine.
-
Kubinova, S., Sykova, E., Nanotechnologies in regenerative medicine. Minim. Invasive Ther. Allied Technol. 2010, 19, 144-156.
-
(2010)
Minim. Invasive Ther. Allied Technol.
, vol.19
, pp. 144-156
-
-
Kubinova, S.1
Sykova, E.2
-
6
-
-
80054062393
-
Biomimetic nanofibrous scaffolds for bone tissue engineering.
-
Holzwarth, J. M., Ma, P. X., Biomimetic nanofibrous scaffolds for bone tissue engineering. Biomaterials 2011, 32, 9622-9629.
-
(2011)
Biomaterials
, vol.32
, pp. 9622-9629
-
-
Holzwarth, J.M.1
Ma, P.X.2
-
7
-
-
67649128460
-
Electrospun nanofibers as a platform for multifunctional, hierarchically organized nanocomposite.
-
Teo, W. E., Ramakrishna, S., Electrospun nanofibers as a platform for multifunctional, hierarchically organized nanocomposite. Compos. Sci. Technol. 2009, 69, 1804-1817.
-
(2009)
Compos. Sci. Technol.
, vol.69
, pp. 1804-1817
-
-
Teo, W.E.1
Ramakrishna, S.2
-
8
-
-
0030232761
-
Nanometre diameter fibres of polymer, produced by electrospinning.
-
Reneker, D. H., Chun, I., Nanometre diameter fibres of polymer, produced by electrospinning. Nanotechnology 1996, 7, 216-223.
-
(1996)
Nanotechnology
, vol.7
, pp. 216-223
-
-
Reneker, D.H.1
Chun, I.2
-
9
-
-
15944363811
-
Electrospinning of nanofibers.
-
Subbiah, T., Bhat, G. S., Tock, R. W., Pararneswaran, S., Ramkumar, S. S., Electrospinning of nanofibers. J. Appl. Polym. Sci. 2005, 96, 557-569.
-
(2005)
J. Appl. Polym. Sci.
, vol.96
, pp. 557-569
-
-
Subbiah, T.1
Bhat, G.S.2
Tock, R.W.3
Pararneswaran, S.4
Ramkumar, S.S.5
-
10
-
-
33745799503
-
Electrospinning of polymeric nanofibers for tissue engineering applications: A review.
-
Pham, Q. P., Sharma, U., Mikos, A. G., Electrospinning of polymeric nanofibers for tissue engineering applications: A review. Tissue Eng. 2006, 12, 1197-1211.
-
(2006)
Tissue Eng.
, vol.12
, pp. 1197-1211
-
-
Pham, Q.P.1
Sharma, U.2
Mikos, A.G.3
-
11
-
-
77949652722
-
Electrospinning: A fascinating fiber fabrication technique.
-
Bhardwaj, N., Kundu, S. C., Electrospinning: A fascinating fiber fabrication technique. Biotechnol. Adv. 2010, 28, 325-347.
-
(2010)
Biotechnol. Adv.
, vol.28
, pp. 325-347
-
-
Bhardwaj, N.1
Kundu, S.C.2
-
12
-
-
79551704089
-
Fabrication of aligned electrospun nanofibers by inclined gap method.
-
Park, S. H., Yang, D. Y., Fabrication of aligned electrospun nanofibers by inclined gap method. J. Appl. Polym. Sci. 2011, 120, 1800-1807.
-
(2011)
J. Appl. Polym. Sci.
, vol.120
, pp. 1800-1807
-
-
Park, S.H.1
Yang, D.Y.2
-
13
-
-
58149269240
-
Applications of electrospun fibers.
-
Lu, P., Ding, B., Applications of electrospun fibers. Recent Pat. Nanotechnology 2008, 2, 169-182.
-
(2008)
Recent Pat. Nanotechnology
, vol.2
, pp. 169-182
-
-
Lu, P.1
Ding, B.2
-
14
-
-
77949657773
-
Polyblend nanofibers for biomedical applications: perspectives and challenges.
-
Gunn, J., Zhang, M. Q., Polyblend nanofibers for biomedical applications: perspectives and challenges. Trends Biotechnol. 2010, 28, 189-197.
-
(2010)
Trends Biotechnol.
, vol.28
, pp. 189-197
-
-
Gunn, J.1
Zhang, M.Q.2
-
15
-
-
70249125098
-
Progress in the field of electrospinning for tissue engineering applications.
-
Agarwal, S., Wendorff, J. H., Greiner, A., Progress in the field of electrospinning for tissue engineering applications. Adv. Mater. 2009, 21, 3343-3351.
-
(2009)
Adv. Mater.
, vol.21
, pp. 3343-3351
-
-
Agarwal, S.1
Wendorff, J.H.2
Greiner, A.3
-
16
-
-
79959899377
-
Bioactive electrospun scaffolds delivering growth factors and genes for tissue engineering applications.
-
Ji, W., Sun, Y., Yang, F., Van Den Beucken, J. et al., Bioactive electrospun scaffolds delivering growth factors and genes for tissue engineering applications. Pharm. Res. 2011, 28, 1259-1272.
-
(2011)
Pharm. Res.
, vol.28
, pp. 1259-1272
-
-
Ji, W.1
Sun, Y.2
Yang, F.3
Van Den Beucken, J.4
-
17
-
-
46249120393
-
Co-axial electrospinning for nanofiber structures: Preparation and applications.
-
Moghe, A. K., Gupta, B. S., Co-axial electrospinning for nanofiber structures: Preparation and applications. Polym. Rev. 2008, 48, 353-377.
-
(2008)
Polym. Rev.
, vol.48
, pp. 353-377
-
-
Moghe, A.K.1
Gupta, B.S.2
-
18
-
-
70350214802
-
Hybrid nanofiber structures for tissue engineering.
-
Moghe, A. K., Gupta, B. S., Hybrid nanofiber structures for tissue engineering. AATCC Rev. 2009, 9, 43-47.
-
(2009)
AATCC Rev.
, vol.9
, pp. 43-47
-
-
Moghe, A.K.1
Gupta, B.S.2
-
19
-
-
84871803246
-
-
Biomaterials The Intersection of Biology and Materials Science, Pearson Prentice Hall, New York
-
Temenoff, J., Mikos, A., Biomaterials The Intersection of Biology and Materials Science, Pearson Prentice Hall, New York 2008.
-
(2008)
-
-
Temenoff, J.1
Mikos, A.2
-
20
-
-
0032908323
-
Structures and function of hemidesmosomes: More than simple adhesion complexes.
-
Borradori, L., Sonnenberg, A., Structures and function of hemidesmosomes: More than simple adhesion complexes. J. Invest.Dermatol. 1999, 112, 411-418.
-
(1999)
J. Invest.Dermatol.
, vol.112
, pp. 411-418
-
-
Borradori, L.1
Sonnenberg, A.2
-
21
-
-
3042799330
-
Focal adhesion regulation of cell behavior.
-
Wozniak, M. A., Modzelewska, K., Kwong, L., Keely, P. J., Focal adhesion regulation of cell behavior. Biochim. Biophys. Acta-Mol. Cell Res. 2004, 1692, 103-119.
-
(2004)
Biochim. Biophys. Acta-Mol. Cell Res.
, vol.1692
, pp. 103-119
-
-
Wozniak, M.A.1
Modzelewska, K.2
Kwong, L.3
Keely, P.J.4
-
22
-
-
79951766658
-
Biomedical applications of nanofibers.
-
Leung, V., Ko, F., Biomedical applications of nanofibers. Polym. Adv. Technol. 2011, 22, 350-365.
-
(2011)
Polym. Adv. Technol.
, vol.22
, pp. 350-365
-
-
Leung, V.1
Ko, F.2
-
23
-
-
79955644493
-
Influence of AC electric fields on the adsorption of plasma proteins onto nanofiber biomaterials.
-
Krasteva, V., Pehlivanova, V., Seifert, B., Luetzow, K. et al., Influence of AC electric fields on the adsorption of plasma proteins onto nanofiber biomaterials. C. R. Acad. Bulg. Sci. 2011, 64, 535-544.
-
(2011)
C. R. Acad. Bulg. Sci.
, vol.64
, pp. 535-544
-
-
Krasteva, V.1
Pehlivanova, V.2
Seifert, B.3
Luetzow, K.4
-
24
-
-
33846864431
-
Cell adhesion on nanofibrous polytetrafluoroethylene (nPTFE).
-
Ainslie, K. M., Bachelder, E. M., Borkar, S., Zahr, A. S. et al., Cell adhesion on nanofibrous polytetrafluoroethylene (nPTFE). Langmuir 2007, 23, 747-754.
-
(2007)
Langmuir
, vol.23
, pp. 747-754
-
-
Ainslie, K.M.1
Bachelder, E.M.2
Borkar, S.3
Zahr, A.S.4
-
25
-
-
33749539648
-
Nano-fibrous scaffolding promotes osteoblast differentiation and biomineralization.
-
Woo, K. M., Jun, J. H., Chen, V. J., Seo, J. Y. et al., Nano-fibrous scaffolding promotes osteoblast differentiation and biomineralization. Biomaterials 2007, 28, 335-343.
-
(2007)
Biomaterials
, vol.28
, pp. 335-343
-
-
Woo, K.M.1
Jun, J.H.2
Chen, V.J.3
Seo, J.Y.4
-
26
-
-
0035471019
-
Structure and functions of classical cadherins.
-
Ivanov, D. B., Philippova, M. P., Tkachuk, V. A., Structure and functions of classical cadherins. Biochemistry-Moscow 2001, 66, 1174-1186.
-
(2001)
Biochemistry-Moscow
, vol.66
, pp. 1174-1186
-
-
Ivanov, D.B.1
Philippova, M.P.2
Tkachuk, V.A.3
-
27
-
-
0035227836
-
Functions of selectins
-
Ley, K., Functions of selectins, Results Probl. Cell Differ. 2001, 33, 177-200.
-
(2001)
Results Probl. Cell Differ.
, vol.33
, pp. 177-200
-
-
Ley, K.1
-
28
-
-
77951019810
-
Mucin-interacting proteins: from function to therapeutics.
-
Senapati, S., Das, S., Batra, S. K., Mucin-interacting proteins: from function to therapeutics. Trends Biochem. Sci. 2010, 35, 236-245.
-
(2010)
Trends Biochem. Sci.
, vol.35
, pp. 236-245
-
-
Senapati, S.1
Das, S.2
Batra, S.K.3
-
29
-
-
65649146880
-
Integrin signalling at a glance.
-
Harburger, D. S., Calderwood, D. A., Integrin signalling at a glance. J. Cell Sci. 2009, 122, 159-163.
-
(2009)
J. Cell Sci.
, vol.122
, pp. 159-163
-
-
Harburger, D.S.1
Calderwood, D.A.2
-
30
-
-
0346123065
-
Biological response of chondrocytes cultured in three-dimensional nanofibrous poly(epsilon-caprolactone) scaffolds.
-
Li, W. J., Danielson, K. G., Alexander, P. G., Tuan, R. S., Biological response of chondrocytes cultured in three-dimensional nanofibrous poly(epsilon-caprolactone) scaffolds. J. Biomed. Mater. Res. Part A 2003, 67A, 1105-1114.
-
(2003)
J. Biomed. Mater. Res. Part A
, vol.67
, Issue.A
, pp. 1105-1114
-
-
Li, W.J.1
Danielson, K.G.2
Alexander, P.G.3
Tuan, R.S.4
-
31
-
-
36048973218
-
Functionality of endothelial cells on silk fibroin nets: Comparative study of micro- and nanometric fibre size.
-
Bondar, B., Fuchs, S., Motta, A., Migliaresi, C., Kirkpatrick, C. J., Functionality of endothelial cells on silk fibroin nets: Comparative study of micro- and nanometric fibre size. Biomaterials 2008, 29, 561-572.
-
(2008)
Biomaterials
, vol.29
, pp. 561-572
-
-
Bondar, B.1
Fuchs, S.2
Motta, A.3
Migliaresi, C.4
Kirkpatrick, C.J.5
-
32
-
-
40049105898
-
Electrospun nanofiber scaffolds for rapid and rich capture of bone marrow-derived hematopoietic stem cells.
-
Ma, K., Chan, C. K., Liao, S., Hwang, W. Y. K. et al., Electrospun nanofiber scaffolds for rapid and rich capture of bone marrow-derived hematopoietic stem cells. Biomaterials 2008, 29, 2096-2103.
-
(2008)
Biomaterials
, vol.29
, pp. 2096-2103
-
-
Ma, K.1
Chan, C.K.2
Liao, S.3
Hwang, W.Y.K.4
-
33
-
-
81855182157
-
Functionalization of reactive polymer multilayers with RGD and an antifouling motif: RGD density provides control over human corneal epithelial cell-substrate interactions.
-
Tocce, E. J., Broderick, A. H., Murphy, K. C., Liliensiek, S. J. et al., Functionalization of reactive polymer multilayers with RGD and an antifouling motif: RGD density provides control over human corneal epithelial cell-substrate interactions. J. Biomed. Mater. Res. Part A 2012, 100A, 84-93.
-
(2012)
J. Biomed. Mater. Res. Part A
, vol.100
, Issue.A
, pp. 84-93
-
-
Tocce, E.J.1
Broderick, A.H.2
Murphy, K.C.3
Liliensiek, S.J.4
-
34
-
-
79952157821
-
Single-Step Electrospinning to Bioactive Polymer Nanofibers.
-
Gentsch, R., Pippig, F., Schmidt, S., Cernoch, P. et al., Single-Step Electrospinning to Bioactive Polymer Nanofibers. Macromolecules 2011, 44, 453-461.
-
(2011)
Macromolecules
, vol.44
, pp. 453-461
-
-
Gentsch, R.1
Pippig, F.2
Schmidt, S.3
Cernoch, P.4
-
35
-
-
78649301142
-
Cellular compatibility of RGD-modified chitosan nanofibers with aligned or random orientation.
-
Wang, Y. Y., Lu, L. X., Feng, Z. Q., Xiao, Z. D., Huang, N. P., Cellular compatibility of RGD-modified chitosan nanofibers with aligned or random orientation. Biomed. Mater. 2010, 5. 054112.
-
(2010)
Biomed. Mater.
, vol.5
, pp. 054112
-
-
Wang, Y.Y.1
Lu, L.X.2
Feng, Z.Q.3
Xiao, Z.D.4
Huang, N.P.5
-
37
-
-
78249256672
-
Nanoscaffold based stem cell regeneration therapy: recent advancement and future potential.
-
Prakash, S., Khan, A., Paul, A., Nanoscaffold based stem cell regeneration therapy: recent advancement and future potential. Expert Opin. Biol. Ther. 2010, 10, 1649-1661.
-
(2010)
Expert Opin. Biol. Ther.
, vol.10
, pp. 1649-1661
-
-
Prakash, S.1
Khan, A.2
Paul, A.3
-
38
-
-
79955033081
-
Fabrication of fibrinogen/P(LLA-CL) hybrid nanofibrous scaffold for potential soft tissue engineering applications.
-
He, C., Xu, X., Zhang, F., Cao, L. et al., Fabrication of fibrinogen/P(LLA-CL) hybrid nanofibrous scaffold for potential soft tissue engineering applications. J. Biomed. Mater. Res. Part A 2011, 97A, 339-347.
-
(2011)
J. Biomed. Mater. Res. Part A
, vol.97
, Issue.A
, pp. 339-347
-
-
He, C.1
Xu, X.2
Zhang, F.3
Cao, L.4
-
39
-
-
84655161440
-
Alignment and composition of laminin-polycaprolactone nanofiber blends enhance peripheral nerve regeneration.
-
Neal, R. A., Tholpady, S. S., Foley, P. L., Swami, N. et al., Alignment and composition of laminin-polycaprolactone nanofiber blends enhance peripheral nerve regeneration. J. Biomed. Mater. Res. Part A 2012, 100A, 406-423.
-
(2012)
J. Biomed. Mater. Res. Part A
, vol.100
, Issue.A
, pp. 406-423
-
-
Neal, R.A.1
Tholpady, S.S.2
Foley, P.L.3
Swami, N.4
-
40
-
-
54949090075
-
Electrospun biocomposite nanofibrous scaffolds for neural tissue engineering.
-
Prabhakaran, M. P., Venugopal, J. R., Ter Chyan, T., Hai, L. B. et al., Electrospun biocomposite nanofibrous scaffolds for neural tissue engineering. Tissue Eng.Part A 2008, 14, 1787-1797.
-
(2008)
Tissue Eng.Part A
, vol.14
, pp. 1787-1797
-
-
Prabhakaran, M.P.1
Venugopal, J.R.2
Ter Chyan, T.3
Hai, L.B.4
-
41
-
-
33947213876
-
Nerve growth factor-immobilized polypyrrole: bioactive electrically conducting polymer for enhanced neurite extension.
-
Gomez, N., Schmidt, C. E., Nerve growth factor-immobilized polypyrrole: bioactive electrically conducting polymer for enhanced neurite extension. J. Biomed. Mater. Res. Part A 2007, 81, 135-149.
-
(2007)
J. Biomed. Mater. Res. Part A
, vol.81
, pp. 135-149
-
-
Gomez, N.1
Schmidt, C.E.2
-
42
-
-
34547584454
-
Conducting polymers in biomedical engineering.
-
Guimard, N. K., Gomez, N., Schmidt, C. E., Conducting polymers in biomedical engineering. Prog. Polym. Sc. 2007, 32, 876-921.
-
(2007)
Prog. Polym. Sc.
, vol.32
, pp. 876-921
-
-
Guimard, N.K.1
Gomez, N.2
Schmidt, C.E.3
-
43
-
-
81255158011
-
Electrospun conducting polymer nanofibers and electrical stimulation of nerve stem cells.
-
Prabhakaran, M. P., Ghasemi-Mobarakeh, L., Jin, G. R., Ramakrishna, S., Electrospun conducting polymer nanofibers and electrical stimulation of nerve stem cells. J. Biosci. Bioeng. 2011, 112, 501-507.
-
(2011)
J. Biosci. Bioeng.
, vol.112
, pp. 501-507
-
-
Prabhakaran, M.P.1
Ghasemi-Mobarakeh, L.2
Jin, G.R.3
Ramakrishna, S.4
-
44
-
-
59849093783
-
The stimulation of myoblast differentiation by electrically conductive sub-micron fibers.
-
Jun, I., Jeong, S., Shin, H., The stimulation of myoblast differentiation by electrically conductive sub-micron fibers. Biomaterials 2009, 30, 2038-2047.
-
(2009)
Biomaterials
, vol.30
, pp. 2038-2047
-
-
Jun, I.1
Jeong, S.2
Shin, H.3
-
45
-
-
31044434427
-
Electrospinning polyaniline-contained gelatin nanofibers for tissue engineering applications.
-
Li, M., Guo, Y., Wei, Y., MacDiarmid, A. G., Lelkes, P. I., Electrospinning polyaniline-contained gelatin nanofibers for tissue engineering applications. Biomaterials 2006, 27, 2705-2715.
-
(2006)
Biomaterials
, vol.27
, pp. 2705-2715
-
-
Li, M.1
Guo, Y.2
Wei, Y.3
MacDiarmid, A.G.4
Lelkes, P.I.5
-
46
-
-
80055013721
-
Polypyrrole-contained electrospun conductive nanofibrous membranes for cardiac tissue engineering.
-
Kai, D., Prabhakaran, M. P., Jin, G. R., Ramakrishna, S., Polypyrrole-contained electrospun conductive nanofibrous membranes for cardiac tissue engineering. J. Biomed. Mater. Res. Part A 2011, 99A, 376-385.
-
(2011)
J. Biomed. Mater. Res. Part A
, vol.99
, Issue.A
, pp. 376-385
-
-
Kai, D.1
Prabhakaran, M.P.2
Jin, G.R.3
Ramakrishna, S.4
-
47
-
-
8844278363
-
Formation of silk fibroin matrices with different texture and its cellular response to normal human keratinocytes.
-
Min, B., Jeong, L., Nam, Y., Kim, J. et al., Formation of silk fibroin matrices with different texture and its cellular response to normal human keratinocytes. Int. J. Biol. Macromol. 2004, 34, 223-230.
-
(2004)
Int. J. Biol. Macromol.
, vol.34
, pp. 223-230
-
-
Min, B.1
Jeong, L.2
Nam, Y.3
Kim, J.4
-
48
-
-
34250189537
-
Morphology, cytoskeletal organization, and myosin dynamics of mouse embryonic fibroblasts cultured on nanofibrillar surfaces.
-
Ahmed, I., Ponery, A. S., Nur-E-Kamal, A., Kamal, J. et al., Morphology, cytoskeletal organization, and myosin dynamics of mouse embryonic fibroblasts cultured on nanofibrillar surfaces. Mol. Cell. Biochem. 2007, 301, 241-249.
-
(2007)
Mol. Cell. Biochem.
, vol.301
, pp. 241-249
-
-
Ahmed, I.1
Ponery, A.S.2
Nur-E-Kamal, A.3
Kamal, J.4
-
49
-
-
0023867658
-
Comparative connective - Tissue structure - Fuction - Relationships in biologic pumps.
-
Factor, S. M., Robinson, T. F., Comparative connective - Tissue structure - Fuction - Relationships in biologic pumps. Lab. Invest. 1988, 58, 150-156.
-
(1988)
Lab. Invest.
, vol.58
, pp. 150-156
-
-
Factor, S.M.1
Robinson, T.F.2
-
50
-
-
24944487172
-
Grafting of gelatin on electrospun poly (caprolactone) nanofibers to improve endothelial cell spreading and proliferation and to control cell orientation.
-
Ma, Z., He, W., Yong, T., Ramakrishna, S., Grafting of gelatin on electrospun poly (caprolactone) nanofibers to improve endothelial cell spreading and proliferation and to control cell orientation. Tissue Eng. 2005, 11, 1149-1158.
-
(2005)
Tissue Eng.
, vol.11
, pp. 1149-1158
-
-
Ma, Z.1
He, W.2
Yong, T.3
Ramakrishna, S.4
-
51
-
-
79960093398
-
Guided orientation of cardiomyocytes on electrospun aligned nanofibers for cardiac tissue engineering.
-
Kai, D., Prabhakaran, M. P., Jin, G. R., Ramakrishna, S., Guided orientation of cardiomyocytes on electrospun aligned nanofibers for cardiac tissue engineering. Journal of Biomed. Mater. Res. Part B 2011, 98B, 379-386.
-
(2011)
Journal of Biomed. Mater. Res. Part B
, vol.98
, Issue.B
, pp. 379-386
-
-
Kai, D.1
Prabhakaran, M.P.2
Jin, G.R.3
Ramakrishna, S.4
-
52
-
-
84859619444
-
Electrospun bio-composite P(LLA-CL)/collagen I/collagen III scaffolds for nerve tissue engineering.
-
Kijenska, E., Prabhakaran, M. P., Swieszkowski, W., Kurzydlowski, K. J., Ramakrishna, S., Electrospun bio-composite P(LLA-CL)/collagen I/collagen III scaffolds for nerve tissue engineering. J. Biomed. Mater. Res. Part B 2012, 100B, 1093-1102.
-
(2012)
J. Biomed. Mater. Res. Part B
, vol.100
, Issue.B
, pp. 1093-1102
-
-
Kijenska, E.1
Prabhakaran, M.P.2
Swieszkowski, W.3
Kurzydlowski, K.J.4
Ramakrishna, S.5
-
53
-
-
33746714341
-
Chondrocyte phenotype in engineered fibrous matrix is regulated by fiber size.
-
Li, W. J., Jiang, Y. J., Tuan, R. S., Chondrocyte phenotype in engineered fibrous matrix is regulated by fiber size. Tissue Eng. 2006, 12, 1775-1785.
-
(2006)
Tissue Eng.
, vol.12
, pp. 1775-1785
-
-
Li, W.J.1
Jiang, Y.J.2
Tuan, R.S.3
-
54
-
-
77956621355
-
Synergistic effects of electrospun PLLA fiber dimension and pattern on neonatal mouse cerebellum C17.2 stem cells.
-
He, L. M., Liao, S. S., Quan, D. P., Ma, K. et al., Synergistic effects of electrospun PLLA fiber dimension and pattern on neonatal mouse cerebellum C17.2 stem cells. Acta Biomater. 2010, 6, 2960-2969.
-
(2010)
Acta Biomater.
, vol.6
, pp. 2960-2969
-
-
He, L.M.1
Liao, S.S.2
Quan, D.P.3
Ma, K.4
-
55
-
-
36249014735
-
Cutaneous stem cells: something new and something borrowed.
-
Sun, X., Fu, X., Sheng, Z., Cutaneous stem cells: something new and something borrowed. Wound Repair and Regen. 2007, 15, 775-785.
-
(2007)
Wound Repair and Regen.
, vol.15
, pp. 775-785
-
-
Sun, X.1
Fu, X.2
Sheng, Z.3
-
56
-
-
70349810887
-
Electrospun scaffolds for stem cell engineering.
-
Lim, S. H., Mao, H. Q., Electrospun scaffolds for stem cell engineering. Adv. Drug Deliv. Rev. 2009, 61, 1084-1096.
-
(2009)
Adv. Drug Deliv. Rev.
, vol.61
, pp. 1084-1096
-
-
Lim, S.H.1
Mao, H.Q.2
-
57
-
-
77957675934
-
Colonization and osteogenic differentiation of different stem cell sources on electrospun nanofiber meshes.
-
Kolambkar, Y. M., Peister, A., Ekaputra, A. K., Hutmacher, D. W., Guldberg, R. E., Colonization and osteogenic differentiation of different stem cell sources on electrospun nanofiber meshes. Tissue Eng. Part A 2010, 16, 3219-3230.
-
(2010)
Tissue Eng. Part A
, vol.16
, pp. 3219-3230
-
-
Kolambkar, Y.M.1
Peister, A.2
Ekaputra, A.K.3
Hutmacher, D.W.4
Guldberg, R.E.5
-
58
-
-
33749552865
-
Continuing differentiation of human mesenchymal stem cells and induced chondrogenic and osteogenic lineages in electrospun PLGA nanofiber scaffold.
-
Xin, X., Hussain, M., Mao, J. J., Continuing differentiation of human mesenchymal stem cells and induced chondrogenic and osteogenic lineages in electrospun PLGA nanofiber scaffold. Biomaterials 2007, 28, 316-325.
-
(2007)
Biomaterials
, vol.28
, pp. 316-325
-
-
Xin, X.1
Hussain, M.2
Mao, J.J.3
-
59
-
-
77957314287
-
The effect of nanofiber-guided cell alignment on the preferential differentiation of neural stem cells.
-
Lim, S. H., Liu, X. Y., Song, H., Yarema, K. J., Mao, H.-Q., The effect of nanofiber-guided cell alignment on the preferential differentiation of neural stem cells. Biomaterials 2010, 31, 9031-9039.
-
(2010)
Biomaterials
, vol.31
, pp. 9031-9039
-
-
Lim, S.H.1
Liu, X.Y.2
Song, H.3
Yarema, K.J.4
Mao, H.-Q.5
-
60
-
-
79952074848
-
Nanofiber matrices promote the neuronal differentiation of human embryonic stem cell-derived neural precursors in vitro.
-
Mahairaki, V., Lim, S. H., Christopherson, G. T., Xu, L. et al., Nanofiber matrices promote the neuronal differentiation of human embryonic stem cell-derived neural precursors in vitro. Tissue Eng. Part A 2011, 17, 855-863.
-
(2011)
Tissue Eng. Part A
, vol.17
, pp. 855-863
-
-
Mahairaki, V.1
Lim, S.H.2
Christopherson, G.T.3
Xu, L.4
-
61
-
-
79959845985
-
Stem cell differentiation to epidermal lineages on electrospun nanofibrous substrates for skin tissue engineering.
-
Jin, G. R., Prabhakaran, M. P., Ramakrishna, S., Stem cell differentiation to epidermal lineages on electrospun nanofibrous substrates for skin tissue engineering. Acta Biomater. 2011, 7, 3113-3122.
-
(2011)
Acta Biomater.
, vol.7
, pp. 3113-3122
-
-
Jin, G.R.1
Prabhakaran, M.P.2
Ramakrishna, S.3
-
62
-
-
67849109814
-
Mesenchymal stem cell differentiation to neuronal cells on electrospun nanofibrous substrates for nerve tissue engineering.
-
Prabhakaran, M., Venugopal, J., Ramakrishna, S., Mesenchymal stem cell differentiation to neuronal cells on electrospun nanofibrous substrates for nerve tissue engineering. Biomaterials 2009, 30, 4996-5003.
-
(2009)
Biomaterials
, vol.30
, pp. 4996-5003
-
-
Prabhakaran, M.1
Venugopal, J.2
Ramakrishna, S.3
-
63
-
-
80053567701
-
Effects of electrospun submicron fibers in calcium phosphate cement scaffold on mechanical properties and osteogenic differentiation of umbilical cord stem cells.
-
Bao, C., Chen, W., Weir, M. D., Thein-Han, W., Xu, H. H. K., Effects of electrospun submicron fibers in calcium phosphate cement scaffold on mechanical properties and osteogenic differentiation of umbilical cord stem cells. Acta Biomater. 2011, 7, 4037-4044.
-
(2011)
Acta Biomater.
, vol.7
, pp. 4037-4044
-
-
Bao, C.1
Chen, W.2
Weir, M.D.3
Thein-Han, W.4
Xu, H.H.K.5
-
64
-
-
76649103732
-
Control of osteogenic differentiation and mineralization of human mesenchymal stem cells on somposite nanofibers containing poly [lactic-co-(glycolic acid)] and hydroxyapatite.
-
Lee, J. H., Rim, N. G., Jung, H. S., Shin, H., Control of osteogenic differentiation and mineralization of human mesenchymal stem cells on somposite nanofibers containing poly [lactic-co-(glycolic acid)] and hydroxyapatite. Macromol. Biosci. 2010, 10, 173-182.
-
(2010)
Macromol. Biosci.
, vol.10
, pp. 173-182
-
-
Lee, J.H.1
Rim, N.G.2
Jung, H.S.3
Shin, H.4
-
65
-
-
82355191909
-
Direct and cell signaling-based, geometry-induced neuronal differentiation of neural stem cells.
-
Bakhru, S., Nain, A. S., Highley, C., Wang, J. et al., Direct and cell signaling-based, geometry-induced neuronal differentiation of neural stem cells. Integr. Biology 2011, 3, 1207-1214.
-
(2011)
Integr. Biology
, vol.3
, pp. 1207-1214
-
-
Bakhru, S.1
Nain, A.S.2
Highley, C.3
Wang, J.4
-
66
-
-
55249093369
-
The differentiation of embryonic stem cells seeded on electrospun nanofibers into neural lineages.
-
Xie, J., Willerth, S. M., Li, X., Macewan, M. R. et al., The differentiation of embryonic stem cells seeded on electrospun nanofibers into neural lineages. Biomaterials 2009, 30, 354-362.
-
(2009)
Biomaterials
, vol.30
, pp. 354-362
-
-
Xie, J.1
Willerth, S.M.2
Li, X.3
Macewan, M.R.4
-
67
-
-
84856529710
-
Nanofiber topography and sustained biochemical signaling enhance human mesenchymal stem cell neural commitment.
-
Jiang, X., Cao, H. Q., Shi, L. Y., Ng, S. Y. et al., Nanofiber topography and sustained biochemical signaling enhance human mesenchymal stem cell neural commitment. Acta Biomater. 2012, 8, 1290-1302.
-
(2012)
Acta Biomater.
, vol.8
, pp. 1290-1302
-
-
Jiang, X.1
Cao, H.Q.2
Shi, L.Y.3
Ng, S.Y.4
-
68
-
-
78650861025
-
Osteogenic differentiation of marrow stromal cells on random and aligned electrospun poly(L-lactide) nanofibers.
-
Ma, J., He, X., Jabbari, E., Osteogenic differentiation of marrow stromal cells on random and aligned electrospun poly(L-lactide) nanofibers. Ann. Biomed. Eng. 2011, 39, 14-25.
-
(2011)
Ann. Biomed. Eng.
, vol.39
, pp. 14-25
-
-
Ma, J.1
He, X.2
Jabbari, E.3
-
69
-
-
77049107428
-
Role of nanofibrous poly(caprolactone) acaffolds in human mesenchymal stem cell attachment and spreading for in vitro bone tissue engineering-response to osteogenic regulators.
-
Binulal, N. S., Deepthy, M., Selvamurugan, N., Shalumon, K. T. et al., Role of nanofibrous poly(caprolactone) acaffolds in human mesenchymal stem cell attachment and spreading for in vitro bone tissue engineering-response to osteogenic regulators. Tissue Eng. Part A 2010, 16, 393-404.
-
(2010)
Tissue Eng. Part A
, vol.16
, pp. 393-404
-
-
Binulal, N.S.1
Deepthy, M.2
Selvamurugan, N.3
Shalumon, K.T.4
-
70
-
-
10044289544
-
Electrospinning of nano/micro scale poly(L-lactic acid) aligned fibers and their potential in neural tissue engineering.
-
Yang, F., Murugan, R., Wang, S., Ramakrishna, S., Electrospinning of nano/micro scale poly(L-lactic acid) aligned fibers and their potential in neural tissue engineering. Biomaterials 2005, 26, 2603-2610.
-
(2005)
Biomaterials
, vol.26
, pp. 2603-2610
-
-
Yang, F.1
Murugan, R.2
Wang, S.3
Ramakrishna, S.4
-
71
-
-
56449118229
-
The influence of fiber diameter of electrospun substrates on neural stem cell differentiation and proliferation.
-
Christopherson, G. T., Song, H., Mao, H.-Q., The influence of fiber diameter of electrospun substrates on neural stem cell differentiation and proliferation. Biomaterials 2009, 30, 556-564.
-
(2009)
Biomaterials
, vol.30
, pp. 556-564
-
-
Christopherson, G.T.1
Song, H.2
Mao, H.-Q.3
-
72
-
-
79952193164
-
Modulation of embryonic mesenchymal progenitor cell differentiation via control over pure mechanical modulus in electrospun nanofibers.
-
Nam, J., Johnson, J., Lannutti, J. J., Agarwal, S., Modulation of embryonic mesenchymal progenitor cell differentiation via control over pure mechanical modulus in electrospun nanofibers. Acta Biomater. 2011, 7, 1516-1524.
-
(2011)
Acta Biomater.
, vol.7
, pp. 1516-1524
-
-
Nam, J.1
Johnson, J.2
Lannutti, J.J.3
Agarwal, S.4
-
73
-
-
0347760206
-
Nano-fibrous poly(L-lactic acid) scaffolds with interconnected spherical macropores.
-
Chen, V. J., Ma, P. X., Nano-fibrous poly(L-lactic acid) scaffolds with interconnected spherical macropores. Biomaterials 2004, 25, 2065-2073.
-
(2004)
Biomaterials
, vol.25
, pp. 2065-2073
-
-
Chen, V.J.1
Ma, P.X.2
-
74
-
-
33745936923
-
Macroporous and nanofibrous polymer scaffolds and polymer/bone-like apatite composite scaffolds generated by sugar spheres.
-
Wei, G. B., Ma, P. X., Macroporous and nanofibrous polymer scaffolds and polymer/bone-like apatite composite scaffolds generated by sugar spheres. J. Biomed. Mater. Res. Part A 2006, 78A, 306-315.
-
(2006)
J. Biomed. Mater. Res. Part A
, vol.78
, Issue.A
, pp. 306-315
-
-
Wei, G.B.1
Ma, P.X.2
-
75
-
-
34548618320
-
Improved cellular infiltration in electrospun fiber via engineered porosity.
-
Nam, J., Huang, Y., Agarwal, S., Lannutti, J., Improved cellular infiltration in electrospun fiber via engineered porosity. Tissue Eng. 2007, 13, 2249-2257.
-
(2007)
Tissue Eng.
, vol.13
, pp. 2249-2257
-
-
Nam, J.1
Huang, Y.2
Agarwal, S.3
Lannutti, J.4
-
76
-
-
10644275312
-
Electrospun dual-porosity structure and biodegradation morphology of Montmorillonite reinforced PLLA nanocomposite scaffolds.
-
Lee, Y. H., Lee, J. H., An, I. G., Kim, C. et al., Electrospun dual-porosity structure and biodegradation morphology of Montmorillonite reinforced PLLA nanocomposite scaffolds. Biomaterials 2005, 26, 3165-3172.
-
(2005)
Biomaterials
, vol.26
, pp. 3165-3172
-
-
Lee, Y.H.1
Lee, J.H.2
An, I.G.3
Kim, C.4
-
77
-
-
37649005060
-
Ultraporous 3D polymer meshes by low-temperature electrospinning: Use of ice crystals as a removable void template.
-
Simonet, M., Schneider, O. D., Neuenschwander, P., Stark, W. J., Ultraporous 3D polymer meshes by low-temperature electrospinning: Use of ice crystals as a removable void template. Polymer Eng. Sci. 2007, 47, 2020-2026.
-
(2007)
Polymer Eng. Sci.
, vol.47
, pp. 2020-2026
-
-
Simonet, M.1
Schneider, O.D.2
Neuenschwander, P.3
Stark, W.J.4
-
78
-
-
40649127864
-
The potential to improve cell infiltration in composite fiber-aligned electrospun scaffolds by the selective removal of sacrificial fibers.
-
Baker, B. M., Gee, A. O., Metter, R. B., Nathan, A. S. et al., The potential to improve cell infiltration in composite fiber-aligned electrospun scaffolds by the selective removal of sacrificial fibers. Biomaterials 2008, 29, 2348-2358.
-
(2008)
Biomaterials
, vol.29
, pp. 2348-2358
-
-
Baker, B.M.1
Gee, A.O.2
Metter, R.B.3
Nathan, A.S.4
-
79
-
-
29144536122
-
Nano- and micro-fiber combined scaffolds: A new architecture for bone tissue engineering.
-
Tuzlakoglu, K., Bolgen, N., Salgado, A. J., Gomes, M. E. et al., Nano- and micro-fiber combined scaffolds: A new architecture for bone tissue engineering. J. Mater. Sci. Mater. Med. 2005, 16, 1099-1104.
-
(2005)
J. Mater. Sci. Mater. Med.
, vol.16
, pp. 1099-1104
-
-
Tuzlakoglu, K.1
Bolgen, N.2
Salgado, A.J.3
Gomes, M.E.4
-
80
-
-
48449092707
-
Development of dual scale scaffolds via direct polymer melt deposition and electrospinning for applications in tissue regeneration.
-
Park, S. H., Kim, T. G., Kim, H. C., Yang, D.-Y., Park, T. G., Development of dual scale scaffolds via direct polymer melt deposition and electrospinning for applications in tissue regeneration. Acta Biomater. 2008, 4, 1198-1207.
-
(2008)
Acta Biomater.
, vol.4
, pp. 1198-1207
-
-
Park, S.H.1
Kim, T.G.2
Kim, H.C.3
Yang, D.-Y.4
Park, T.G.5
-
81
-
-
70449365484
-
New directions in nanofibrous scaffolds for soft tissue engineering and regeneration.
-
Baker, B. M., Handorf, A. M., Ionescu, L. C., Li, W. J., Mauck, R. L., New directions in nanofibrous scaffolds for soft tissue engineering and regeneration. Expert Rev. Med. Devices 2009, 6, 515-532.
-
(2009)
Expert Rev. Med. Devices
, vol.6
, pp. 515-532
-
-
Baker, B.M.1
Handorf, A.M.2
Ionescu, L.C.3
Li, W.J.4
Mauck, R.L.5
-
82
-
-
26944451302
-
Microintegrating smooth muscle cells into a biodegradable, elastomeric fiber matrix.
-
Stankus, J. J., Guan, J. J., Fujimoto, K., Wagner, W. R., Microintegrating smooth muscle cells into a biodegradable, elastomeric fiber matrix. Biomaterials 2006, 27, 735-744.
-
(2006)
Biomaterials
, vol.27
, pp. 735-744
-
-
Stankus, J.J.1
Guan, J.J.2
Fujimoto, K.3
Wagner, W.R.4
-
83
-
-
33846267342
-
Cell electrospinning: a unique biotechnique for encapsulating living organisms for generating active biological microthreads/scaffolds.
-
Townsend-Nicholson, A., Jayasinghe, S. N., Cell electrospinning: a unique biotechnique for encapsulating living organisms for generating active biological microthreads/scaffolds. Biomacromolecules 2006, 7, 3364-3369.
-
(2006)
Biomacromolecules
, vol.7
, pp. 3364-3369
-
-
Townsend-Nicholson, A.1
Jayasinghe, S.N.2
|