메뉴 건너뛰기




Volumn 16, Issue 1, 2013, Pages 262-272

Fractional wave equations with attenuation

Author keywords

attenuation; continuous time random walk; dispersion; fractional derivative; stable law; subordination; wave equation

Indexed keywords


EID: 84871765883     PISSN: 13110454     EISSN: 13142444     Source Type: Journal    
DOI: 10.2478/s13540-013-0016-9     Document Type: Article
Times cited : (18)

References (30)
  • 1
    • 0001859932 scopus 로고    scopus 로고
    • A general solution for the fourth-order fractional diffusion-wave equation
    • 1743402 1111.45300
    • O.P. Agrawal, A general solution for the fourth-order fractional diffusion-wave equation. Fract. Calc. Appl. Anal. 3, No 1 (2000), 1-12.
    • (2000) Fract. Calc. Appl. Anal. , vol.3 , Issue.1 , pp. 1-12
    • Agrawal, O.P.1
  • 2
    • 14844311252 scopus 로고    scopus 로고
    • Advection and dispersion in time and space
    • B. Baeumer, D.A. Benson and M.M. Meerschaert, Advection and dispersion in time and space. Phys. A 350, No 2-4 (2005), 245-262.
    • (2005) Phys. A , vol.350 , Issue.2-4 , pp. 245-262
    • Baeumer, B.1    Benson, D.A.2    Meerschaert, M.M.3
  • 3
    • 3242750610 scopus 로고    scopus 로고
    • Limit theorem for continuous time random walks with two time scales
    • 2052584 1050.60038 10.1239/jap/1082999078
    • P. Becker-Kern, M.M. Meerschaert and H.P. Scheffler, Limit theorem for continuous time random walks with two time scales. J. Applied Probab. 41, No 2 (2004), 455-466.
    • (2004) J. Applied Probab. , vol.41 , Issue.2 , pp. 455-466
    • Becker-Kern, P.1    Meerschaert, M.M.2    Scheffler, H.P.3
  • 4
    • 0011032162 scopus 로고
    • Transient solution for sound radiated into a viscous fluid
    • 0204.26702 10.1121/1.1910474
    • D.T. Blackstock, Transient solution for sound radiated into a viscous fluid. J. Acoust. Soc. Am. 41 (1967), 1312-1319.
    • (1967) J. Acoust. Soc. Am. , vol.41 , pp. 1312-1319
    • Blackstock, D.T.1
  • 5
    • 84977255207 scopus 로고
    • Linear models of dissipation whose Q is almost frequency independent-II
    • 10.1111/j.1365-246X.1967.tb02303.x
    • M. Caputo. Linear models of dissipation whose Q is almost frequency independent-II. Geophys. J. R. Astron. Soc. 13, No 5 (1967), 529-539; Reprinted in: Fract. Calc. Appl. Anal. 11, No 1 (2008), 3-14.
    • (1967) Geophys. J. R. Astron. Soc. , vol.13 , Issue.5 , pp. 529-539
    • Caputo, M.1
  • 6
    • 0242693197 scopus 로고    scopus 로고
    • Modified Szabo's wave equation models for lossy media obeying frequency power law
    • 10.1121/1.1621392
    • W. Chen and S Holm, Modified Szabo's wave equation models for lossy media obeying frequency power law. J. Acoust. Soc. Am. 114, No 5 (2003), 2570-2574.
    • (2003) J. Acoust. Soc. Am. , vol.114 , Issue.5 , pp. 2570-2574
    • Chen, W.1    Holm, S.2
  • 7
    • 1642641759 scopus 로고    scopus 로고
    • Fractional Laplacian time-space models for linear and nonlinear lossy media exhibiting arbitrary frequency power-law dependency
    • 2068713 10.1121/1.1646399
    • W. Chen and S. Holm, Fractional Laplacian time-space models for linear and nonlinear lossy media exhibiting arbitrary frequency power-law dependency. J. Acoust. Soc. Am. 115, No 4 (2004), 1424-1430.
    • (2004) J. Acoust. Soc. Am. , vol.115 , Issue.4 , pp. 1424-1430
    • Chen, W.1    Holm, S.2
  • 9
    • 0001859930 scopus 로고    scopus 로고
    • Mapping between solutions of fractional diffusion-wave equations
    • 1743407 1033.35161
    • R. Gorenflo, A. Iskenderov and Yu. Luchko, Mapping between solutions of fractional diffusion-wave equations. Fract. Calc. Appl. Anal. 3, No 1 (2000), 75-86.
    • (2000) Fract. Calc. Appl. Anal. , vol.3 , Issue.1 , pp. 75-86
    • Gorenflo, R.1    Iskenderov, A.2    Luchko, Yu.3
  • 11
    • 56749132453 scopus 로고    scopus 로고
    • Time-domain 3D Green's functions for power law media
    • 10.1121/1.2977669
    • J.F. Kelly, R.J. McGough, and M.M. Meerschaert, Time-domain 3D Green's functions for power law media. J. Acoust. Soc. Am. 124, No 5 (2008), 2861-2872.
    • (2008) J. Acoust. Soc. Am. , vol.124 , Issue.5 , pp. 2861-2872
    • Kelly, J.F.1    McGough, R.J.2    Meerschaert, M.M.3
  • 12
    • 84869200108 scopus 로고    scopus 로고
    • Solvability of a Dirichlet problem for a time fractional diffusion-wave equation in Lipschitz domains
    • 2897773
    • J. Kemppainen, Solvability of a Dirichlet problem for a time fractional diffusion-wave equation in Lipschitz domains. Fract. Calc. Appl. Anal. 15, No 2 (2012), 195-206; DOI:10.2478/s13540-012-0014-3; at http://link.springer.com/ article/10.2478/s13540-012-0014-3.
    • (2012) Fract. Calc. Appl. Anal. , vol.15 , Issue.2 , pp. 195-206
    • Kemppainen, J.1
  • 13
    • 77949264033 scopus 로고    scopus 로고
    • Cauchy-Type problem for diffusion-wave equation with the Riemann-Liouville partial derivative
    • 2268422 1128.35007
    • A.A. Kilbas, J.J. Trujillo and A.A. Voroshilov, Cauchy-Type problem for diffusion-wave equation with the Riemann-Liouville partial derivative. Fract. Calc. Appl. Anal. 8, No 4 (2005), 403-430; at http://www.math.bas.bg/~fcaa.
    • (2005) Fract. Calc. Appl. Anal. , vol.8 , Issue.4 , pp. 403-430
    • Kilbas, A.A.1    Trujillo, J.J.2    Voroshilov, A.A.3
  • 14
    • 73549104035 scopus 로고    scopus 로고
    • Generalized continuous-time random walks, subordination by hitting times, and fractional dynamics
    • 2766141 1193.60046 10.1137/S0040585X97983857
    • V.N. Kolokoltsov, Generalized continuous-time random walks, subordination by hitting times, and fractional dynamics. Th. Probab. Appl. 53, No 4 (2009), 594-609.
    • (2009) Th. Probab. Appl. , vol.53 , Issue.4 , pp. 594-609
    • Kolokoltsov, V.N.1
  • 15
    • 9644281076 scopus 로고    scopus 로고
    • Full wave modeling of therapeutic ultrasound: Efficient time-domain implementation of the frequency power-law attenuation
    • 10.1121/1.1798355
    • M. Liebler, S. Ginter, T. Dreyer, and R.E. Riedlinger, Full wave modeling of therapeutic ultrasound: Efficient time-domain implementation of the frequency power-law attenuation. J. Acoust. Soc. Am. 116, No 5 (2004), 2742-2750.
    • (2004) J. Acoust. Soc. Am. , vol.116 , Issue.5 , pp. 2742-2750
    • Liebler, M.1    Ginter, S.2    Dreyer, T.3    Riedlinger, R.E.4
  • 16
    • 84871790575 scopus 로고    scopus 로고
    • Numerical methods for solving the multi-term time-fractional wavediffusion equation
    • F. Liu, M.M. Meerschaert, R.J. McGough, P. Zhuang and Q. Liu, Numerical methods for solving the multi-term time-fractional wavediffusion equation. Fract. Calc. Appl. Anal. 16,No 1 (2013), 9-25 (same issue); DOI:10.2478/s13540- 013-0002-2; at http://link.springer.com/journal/13540.
    • (2013) Fract. Calc. Appl. Anal. , vol.16 , Issue.1 , pp. 9-25
    • Liu, F.1    Meerschaert, M.M.2    McGough, R.J.3    Zhuang, P.4    Liu, Q.5
  • 18
    • 41349099804 scopus 로고    scopus 로고
    • Stochastic solution of space-time fractional diffusion equations
    • 1917983 10.1103/PhysRevE.65.041103
    • M.M. Meerschaert, D.A. Benson, H.P. Scheffler, and B. Baeumer, Stochastic solution of space-time fractional diffusion equations. Phys. Rev. E 65, No 4 (2002), 1103-1106.
    • (2002) Phys. Rev. e , vol.65 , Issue.4 , pp. 1103-1106
    • Meerschaert, M.M.1    Benson, D.A.2    Scheffler, H.P.3    Baeumer, B.4
  • 19
    • 4043102385 scopus 로고    scopus 로고
    • Limit theorems for continuous time random walks with infinite mean waiting times
    • 2074812 1065.60042 10.1239/jap/1091543414
    • M.M. Meerschaert and H.P. Scheffler, Limit theorems for continuous time random walks with infinite mean waiting times. J. Applied Probab. 41, No 3 (2004), 623-638.
    • (2004) J. Applied Probab. , vol.41 , Issue.3 , pp. 623-638
    • Meerschaert, M.M.1    Scheffler, H.P.2
  • 20
    • 48349113290 scopus 로고    scopus 로고
    • Triangular array limits for continuous time random walks
    • 2442372 1153.60023 10.1016/j.spa.2007.10.005
    • M.M. Meerschaert and H.-P. Scheffler, Triangular array limits for continuous time random walks. Stoch. Proc. Appl. 118, No 9 (2008), 1606-1633.
    • (2008) Stoch. Proc. Appl. , vol.118 , Issue.9 , pp. 1606-1633
    • Meerschaert, M.M.1    Scheffler, H.-P.2
  • 22
    • 84871013921 scopus 로고    scopus 로고
    • Stochastic solution to a time-fractional attenuated wave equation
    • 10.1007/s11071-012-0532-x
    • M.M. Meerschaert, P. Straka, Y. Zhou, and J. McGough, Stochastic solution to a time-fractional attenuated wave equation. Nonlinear Dynamics 70,No. 2 (2012), 1273-1281.
    • (2012) Nonlinear Dynamics , vol.70 , Issue.2 , pp. 1273-1281
    • Meerschaert, M.M.1    Straka, P.2    Zhou, Y.3    McGough, J.4
  • 23
    • 84869160286 scopus 로고    scopus 로고
    • Non-central-symmetric solution to timefractional diffusion-wave equation in a sphere under Dirichlet boundary condition
    • 2897778
    • Y. Povstenko, Non-central-symmetric solution to timefractional diffusion-wave equation in a sphere under Dirichlet boundary condition. Fract. Calc. Appl. Anal. 15, No 2 (2012), 253-266; DOI:10.2478/s13540-012-0019-y; at http://link.springer.com/article/10.2478/s13540-012-0019-y.
    • (2012) Fract. Calc. Appl. Anal. , vol.15 , Issue.2 , pp. 253-266
    • Povstenko, Y.1
  • 24
    • 0000599032 scopus 로고    scopus 로고
    • Fractional kinetic equations: Solutions and applications
    • 1604710 0933.37029 10.1063/1.166272
    • A.I. Saichev and G.M. Zaslavsky. Fractional kinetic equations: Solutions and applications. Chaos 7, No 4 (1997), 753-764.
    • (1997) Chaos , vol.7 , Issue.4 , pp. 753-764
    • Saichev, A.I.1    Zaslavsky, G.M.2
  • 27
    • 84871727578 scopus 로고    scopus 로고
    • Well-posedness of diffusion-wave problem with arbitrary finite number of time fractional derivatives in Sobolev spaces Hs.
    • 2649239 1195.26031
    • M.N. Stojanović, Well-posedness of diffusion-wave problem with arbitrary finite number of time fractional derivatives in Sobolev spaces Hs. Fract. Calc. Appl. Anal. 13, No 1 (2010), 21-42; at http://www.math.bas.bg/ ~fcaa.
    • (2010) Fract. Calc. Appl. Anal. , vol.13 , Issue.1 , pp. 21-42
    • Stojanović, M.N.1
  • 28
    • 0028976328 scopus 로고
    • Causal theories and data for acoustic attenuation obeying a frequency power-law
    • 10.1121/1.412332
    • T.L. Szabo, Causal theories and data for acoustic attenuation obeying a frequency power-law. J. Acoust. Soc. Am. 97, No 1 (1995), 14-24.
    • (1995) J. Acoust. Soc. Am. , vol.97 , Issue.1 , pp. 14-24
    • Szabo, T.L.1
  • 29
    • 77956256476 scopus 로고    scopus 로고
    • Modeling power law absorption and dispersion for acoustic propagation using the fractional Laplacian
    • 10.1121/1.3377056
    • B.E. Treeby and B.T. Cox, Modeling power law absorption and dispersion for acoustic propagation using the fractional Laplacian. J. Acoust. Soc. Am. 127, No 5 (2010), 2741-2748.
    • (2010) J. Acoust. Soc. Am. , vol.127 , Issue.5 , pp. 2741-2748
    • Treeby, B.E.1    Cox, B.T.2
  • 30
    • 33845373149 scopus 로고    scopus 로고
    • Finite element analysis of broadband acoustic pulses through inhomogenous media with power law attenuation
    • 10.1121/1.2354032
    • M.G. Wismer, Finite element analysis of broadband acoustic pulses through inhomogenous media with power law attenuation. J. Acoust. Soc. Am. 120, No 6 (2006), 3493-3502.
    • (2006) J. Acoust. Soc. Am. , vol.120 , Issue.6 , pp. 3493-3502
    • Wismer, M.G.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.