-
1
-
-
0001859932
-
A general solution for the fourth-order fractional diffusion-wave equation
-
1743402 1111.45300
-
O.P. Agrawal, A general solution for the fourth-order fractional diffusion-wave equation. Fract. Calc. Appl. Anal. 3, No 1 (2000), 1-12.
-
(2000)
Fract. Calc. Appl. Anal.
, vol.3
, Issue.1
, pp. 1-12
-
-
Agrawal, O.P.1
-
2
-
-
14844311252
-
Advection and dispersion in time and space
-
B. Baeumer, D.A. Benson and M.M. Meerschaert, Advection and dispersion in time and space. Phys. A 350, No 2-4 (2005), 245-262.
-
(2005)
Phys. A
, vol.350
, Issue.2-4
, pp. 245-262
-
-
Baeumer, B.1
Benson, D.A.2
Meerschaert, M.M.3
-
3
-
-
3242750610
-
Limit theorem for continuous time random walks with two time scales
-
2052584 1050.60038 10.1239/jap/1082999078
-
P. Becker-Kern, M.M. Meerschaert and H.P. Scheffler, Limit theorem for continuous time random walks with two time scales. J. Applied Probab. 41, No 2 (2004), 455-466.
-
(2004)
J. Applied Probab.
, vol.41
, Issue.2
, pp. 455-466
-
-
Becker-Kern, P.1
Meerschaert, M.M.2
Scheffler, H.P.3
-
4
-
-
0011032162
-
Transient solution for sound radiated into a viscous fluid
-
0204.26702 10.1121/1.1910474
-
D.T. Blackstock, Transient solution for sound radiated into a viscous fluid. J. Acoust. Soc. Am. 41 (1967), 1312-1319.
-
(1967)
J. Acoust. Soc. Am.
, vol.41
, pp. 1312-1319
-
-
Blackstock, D.T.1
-
5
-
-
84977255207
-
Linear models of dissipation whose Q is almost frequency independent-II
-
10.1111/j.1365-246X.1967.tb02303.x
-
M. Caputo. Linear models of dissipation whose Q is almost frequency independent-II. Geophys. J. R. Astron. Soc. 13, No 5 (1967), 529-539; Reprinted in: Fract. Calc. Appl. Anal. 11, No 1 (2008), 3-14.
-
(1967)
Geophys. J. R. Astron. Soc.
, vol.13
, Issue.5
, pp. 529-539
-
-
Caputo, M.1
-
6
-
-
0242693197
-
Modified Szabo's wave equation models for lossy media obeying frequency power law
-
10.1121/1.1621392
-
W. Chen and S Holm, Modified Szabo's wave equation models for lossy media obeying frequency power law. J. Acoust. Soc. Am. 114, No 5 (2003), 2570-2574.
-
(2003)
J. Acoust. Soc. Am.
, vol.114
, Issue.5
, pp. 2570-2574
-
-
Chen, W.1
Holm, S.2
-
7
-
-
1642641759
-
Fractional Laplacian time-space models for linear and nonlinear lossy media exhibiting arbitrary frequency power-law dependency
-
2068713 10.1121/1.1646399
-
W. Chen and S. Holm, Fractional Laplacian time-space models for linear and nonlinear lossy media exhibiting arbitrary frequency power-law dependency. J. Acoust. Soc. Am. 115, No 4 (2004), 1424-1430.
-
(2004)
J. Acoust. Soc. Am.
, vol.115
, Issue.4
, pp. 1424-1430
-
-
Chen, W.1
Holm, S.2
-
9
-
-
0001859930
-
Mapping between solutions of fractional diffusion-wave equations
-
1743407 1033.35161
-
R. Gorenflo, A. Iskenderov and Yu. Luchko, Mapping between solutions of fractional diffusion-wave equations. Fract. Calc. Appl. Anal. 3, No 1 (2000), 75-86.
-
(2000)
Fract. Calc. Appl. Anal.
, vol.3
, Issue.1
, pp. 75-86
-
-
Gorenflo, R.1
Iskenderov, A.2
Luchko, Yu.3
-
11
-
-
56749132453
-
Time-domain 3D Green's functions for power law media
-
10.1121/1.2977669
-
J.F. Kelly, R.J. McGough, and M.M. Meerschaert, Time-domain 3D Green's functions for power law media. J. Acoust. Soc. Am. 124, No 5 (2008), 2861-2872.
-
(2008)
J. Acoust. Soc. Am.
, vol.124
, Issue.5
, pp. 2861-2872
-
-
Kelly, J.F.1
McGough, R.J.2
Meerschaert, M.M.3
-
12
-
-
84869200108
-
Solvability of a Dirichlet problem for a time fractional diffusion-wave equation in Lipschitz domains
-
2897773
-
J. Kemppainen, Solvability of a Dirichlet problem for a time fractional diffusion-wave equation in Lipschitz domains. Fract. Calc. Appl. Anal. 15, No 2 (2012), 195-206; DOI:10.2478/s13540-012-0014-3; at http://link.springer.com/ article/10.2478/s13540-012-0014-3.
-
(2012)
Fract. Calc. Appl. Anal.
, vol.15
, Issue.2
, pp. 195-206
-
-
Kemppainen, J.1
-
13
-
-
77949264033
-
Cauchy-Type problem for diffusion-wave equation with the Riemann-Liouville partial derivative
-
2268422 1128.35007
-
A.A. Kilbas, J.J. Trujillo and A.A. Voroshilov, Cauchy-Type problem for diffusion-wave equation with the Riemann-Liouville partial derivative. Fract. Calc. Appl. Anal. 8, No 4 (2005), 403-430; at http://www.math.bas.bg/~fcaa.
-
(2005)
Fract. Calc. Appl. Anal.
, vol.8
, Issue.4
, pp. 403-430
-
-
Kilbas, A.A.1
Trujillo, J.J.2
Voroshilov, A.A.3
-
14
-
-
73549104035
-
Generalized continuous-time random walks, subordination by hitting times, and fractional dynamics
-
2766141 1193.60046 10.1137/S0040585X97983857
-
V.N. Kolokoltsov, Generalized continuous-time random walks, subordination by hitting times, and fractional dynamics. Th. Probab. Appl. 53, No 4 (2009), 594-609.
-
(2009)
Th. Probab. Appl.
, vol.53
, Issue.4
, pp. 594-609
-
-
Kolokoltsov, V.N.1
-
15
-
-
9644281076
-
Full wave modeling of therapeutic ultrasound: Efficient time-domain implementation of the frequency power-law attenuation
-
10.1121/1.1798355
-
M. Liebler, S. Ginter, T. Dreyer, and R.E. Riedlinger, Full wave modeling of therapeutic ultrasound: Efficient time-domain implementation of the frequency power-law attenuation. J. Acoust. Soc. Am. 116, No 5 (2004), 2742-2750.
-
(2004)
J. Acoust. Soc. Am.
, vol.116
, Issue.5
, pp. 2742-2750
-
-
Liebler, M.1
Ginter, S.2
Dreyer, T.3
Riedlinger, R.E.4
-
16
-
-
84871790575
-
Numerical methods for solving the multi-term time-fractional wavediffusion equation
-
F. Liu, M.M. Meerschaert, R.J. McGough, P. Zhuang and Q. Liu, Numerical methods for solving the multi-term time-fractional wavediffusion equation. Fract. Calc. Appl. Anal. 16,No 1 (2013), 9-25 (same issue); DOI:10.2478/s13540- 013-0002-2; at http://link.springer.com/journal/13540.
-
(2013)
Fract. Calc. Appl. Anal.
, vol.16
, Issue.1
, pp. 9-25
-
-
Liu, F.1
Meerschaert, M.M.2
McGough, R.J.3
Zhuang, P.4
Liu, Q.5
-
18
-
-
41349099804
-
Stochastic solution of space-time fractional diffusion equations
-
1917983 10.1103/PhysRevE.65.041103
-
M.M. Meerschaert, D.A. Benson, H.P. Scheffler, and B. Baeumer, Stochastic solution of space-time fractional diffusion equations. Phys. Rev. E 65, No 4 (2002), 1103-1106.
-
(2002)
Phys. Rev. e
, vol.65
, Issue.4
, pp. 1103-1106
-
-
Meerschaert, M.M.1
Benson, D.A.2
Scheffler, H.P.3
Baeumer, B.4
-
19
-
-
4043102385
-
Limit theorems for continuous time random walks with infinite mean waiting times
-
2074812 1065.60042 10.1239/jap/1091543414
-
M.M. Meerschaert and H.P. Scheffler, Limit theorems for continuous time random walks with infinite mean waiting times. J. Applied Probab. 41, No 3 (2004), 623-638.
-
(2004)
J. Applied Probab.
, vol.41
, Issue.3
, pp. 623-638
-
-
Meerschaert, M.M.1
Scheffler, H.P.2
-
20
-
-
48349113290
-
Triangular array limits for continuous time random walks
-
2442372 1153.60023 10.1016/j.spa.2007.10.005
-
M.M. Meerschaert and H.-P. Scheffler, Triangular array limits for continuous time random walks. Stoch. Proc. Appl. 118, No 9 (2008), 1606-1633.
-
(2008)
Stoch. Proc. Appl.
, vol.118
, Issue.9
, pp. 1606-1633
-
-
Meerschaert, M.M.1
Scheffler, H.-P.2
-
22
-
-
84871013921
-
Stochastic solution to a time-fractional attenuated wave equation
-
10.1007/s11071-012-0532-x
-
M.M. Meerschaert, P. Straka, Y. Zhou, and J. McGough, Stochastic solution to a time-fractional attenuated wave equation. Nonlinear Dynamics 70,No. 2 (2012), 1273-1281.
-
(2012)
Nonlinear Dynamics
, vol.70
, Issue.2
, pp. 1273-1281
-
-
Meerschaert, M.M.1
Straka, P.2
Zhou, Y.3
McGough, J.4
-
23
-
-
84869160286
-
Non-central-symmetric solution to timefractional diffusion-wave equation in a sphere under Dirichlet boundary condition
-
2897778
-
Y. Povstenko, Non-central-symmetric solution to timefractional diffusion-wave equation in a sphere under Dirichlet boundary condition. Fract. Calc. Appl. Anal. 15, No 2 (2012), 253-266; DOI:10.2478/s13540-012-0019-y; at http://link.springer.com/article/10.2478/s13540-012-0019-y.
-
(2012)
Fract. Calc. Appl. Anal.
, vol.15
, Issue.2
, pp. 253-266
-
-
Povstenko, Y.1
-
24
-
-
0000599032
-
Fractional kinetic equations: Solutions and applications
-
1604710 0933.37029 10.1063/1.166272
-
A.I. Saichev and G.M. Zaslavsky. Fractional kinetic equations: Solutions and applications. Chaos 7, No 4 (1997), 753-764.
-
(1997)
Chaos
, vol.7
, Issue.4
, pp. 753-764
-
-
Saichev, A.I.1
Zaslavsky, G.M.2
-
27
-
-
84871727578
-
Well-posedness of diffusion-wave problem with arbitrary finite number of time fractional derivatives in Sobolev spaces Hs.
-
2649239 1195.26031
-
M.N. Stojanović, Well-posedness of diffusion-wave problem with arbitrary finite number of time fractional derivatives in Sobolev spaces Hs. Fract. Calc. Appl. Anal. 13, No 1 (2010), 21-42; at http://www.math.bas.bg/ ~fcaa.
-
(2010)
Fract. Calc. Appl. Anal.
, vol.13
, Issue.1
, pp. 21-42
-
-
Stojanović, M.N.1
-
28
-
-
0028976328
-
Causal theories and data for acoustic attenuation obeying a frequency power-law
-
10.1121/1.412332
-
T.L. Szabo, Causal theories and data for acoustic attenuation obeying a frequency power-law. J. Acoust. Soc. Am. 97, No 1 (1995), 14-24.
-
(1995)
J. Acoust. Soc. Am.
, vol.97
, Issue.1
, pp. 14-24
-
-
Szabo, T.L.1
-
29
-
-
77956256476
-
Modeling power law absorption and dispersion for acoustic propagation using the fractional Laplacian
-
10.1121/1.3377056
-
B.E. Treeby and B.T. Cox, Modeling power law absorption and dispersion for acoustic propagation using the fractional Laplacian. J. Acoust. Soc. Am. 127, No 5 (2010), 2741-2748.
-
(2010)
J. Acoust. Soc. Am.
, vol.127
, Issue.5
, pp. 2741-2748
-
-
Treeby, B.E.1
Cox, B.T.2
-
30
-
-
33845373149
-
Finite element analysis of broadband acoustic pulses through inhomogenous media with power law attenuation
-
10.1121/1.2354032
-
M.G. Wismer, Finite element analysis of broadband acoustic pulses through inhomogenous media with power law attenuation. J. Acoust. Soc. Am. 120, No 6 (2006), 3493-3502.
-
(2006)
J. Acoust. Soc. Am.
, vol.120
, Issue.6
, pp. 3493-3502
-
-
Wismer, M.G.1
|