-
2
-
-
43949160116
-
Fractional kinetic equation for Hamiltonian chaos
-
Zaslavsky, G.: Fractional kinetic equation for Hamiltonian chaos. Physica D 76, 110-122 (1994)
-
(1994)
Physica D
, vol.76
, pp. 110-122
-
-
Zaslavsky, G.1
-
3
-
-
34748827947
-
Fractional Euler-Lagrange equations of motion in fractional space
-
Muslih, S.I., Baleanu, D.: Fractional Euler-Lagrange equations of motion in fractional space. J. Vib. Control 13(9- 10), 1209-1216 (2007)
-
(2007)
J. Vib. Control
, vol.13
, Issue.9-10
, pp. 1209-1216
-
-
Muslih, S.I.1
Baleanu, D.2
-
4
-
-
79960532588
-
Wave simulation in dissipative media described by distributed-order fractional time derivatives
-
Caputo, M., Carcione, J.M.: Wave simulation in dissipative media described by distributed-order fractional time derivatives. J. Vib. Control 17(8), 1121-1130 (2011)
-
(2011)
J. Vib. Control
, vol.17
, Issue.8
, pp. 1121-1130
-
-
Caputo, M.1
Carcione, J.M.2
-
5
-
-
84863972983
-
Fractional Euler-Lagrange equations revisited
-
Herzallah, M., Baleanu, D.: Fractional Euler-Lagrange equations revisited. Nonlinear Dyn. 69(3), 977-982 (2012)
-
(2012)
Nonlinear Dyn.
, vol.69
, Issue.3
, pp. 977-982
-
-
Herzallah, M.1
Baleanu, D.2
-
6
-
-
84878363605
-
A fractional calculus based model for the simulation of an outbreak of dengue fever
-
to appear, doi:10.1007/s11071-012-0475-2
-
Diethelm, K.: A fractional calculus based model for the simulation of an outbreak of dengue fever. Nonlinear Dyn. (2012, to appear). doi:10.1007/s11071- 012-0475-2
-
(2012)
Nonlinear Dyn.
-
-
Diethelm, K.1
-
7
-
-
0028292355
-
Time domain wave equations for lossy media obeying a frequency power law
-
Szabo, T.L.: Time domain wave equations for lossy media obeying a frequency power law. J. Acoust. Soc. Am. 96, 491-500 (1994)
-
(1994)
J. Acoust. Soc. Am.
, vol.96
, pp. 491-500
-
-
Szabo, T.L.1
-
8
-
-
56749132453
-
Analytical time-domain Green's functions for power-law media
-
Kelly, J.F., McGough, R.J., Meerschaert, M.M.: Analytical time-domain Green's functions for power-law media. J. Acoust. Soc. Am. 124(5), 2861-2872 (2008)
-
(2008)
J. Acoust. Soc. Am.
, vol.124
, Issue.5
, pp. 2861-2872
-
-
Kelly, J.F.1
McGough, R.J.2
Meerschaert, M.M.3
-
9
-
-
67651103488
-
Existence results for differential equations with fractional order and impulses
-
Agarwal, R.P., Benchohra, M., Slimani, B.A.: Existence results for differential equations with fractional order and impulses. Mem. Differ. Equ. Math. Phys. 44, 1-21 (2008)
-
(2008)
Mem. Differ. Equ. Math. Phys.
, vol.44
, pp. 1-21
-
-
Agarwal, R.P.1
Benchohra, M.2
Slimani, B.A.3
-
10
-
-
41349099804
-
Stochastic solution of space-time fractional diffusion equations
-
Meerschaert, M.M., Benson, D.A., Scheffler, H.-P., Baeumer, B.: Stochastic solution of space-time fractional diffusion equations. Phys. Rev. E 65, 1103-1106 (2002)
-
(2002)
Phys. Rev. e
, vol.65
, pp. 1103-1106
-
-
Meerschaert, M.M.1
Benson, D.A.2
Scheffler, H.-P.3
Baeumer, B.4
-
11
-
-
0242693197
-
Modified Szabo's wave equation models for lossy media obeying frequency power law
-
Chen,W., Holm, S.: Modified Szabo's wave equation models for lossy media obeying frequency power law. J. Acoust. Soc. Am. 114, 2570-2754 (2003)
-
(2003)
J. Acoust. Soc. Am.
, vol.114
, pp. 2570-2754
-
-
Chen, W.1
Holm, S.2
-
12
-
-
9644281076
-
Full wave modeling of therapeutic ultrasound: Efficient timedomain implementation of the frequency power-law attenuation
-
Liebler, M., Ginter, S., Dreyer, T., Riedlinger, R.E.: Full wave modeling of therapeutic ultrasound: efficient timedomain implementation of the frequency power-law attenuation. J. Acoust. Soc. Am. 116, 2742-2750 (2004)
-
(2004)
J. Acoust. Soc. Am.
, vol.116
, pp. 2742-2750
-
-
Liebler, M.1
Ginter, S.2
Dreyer, T.3
Riedlinger, R.E.4
-
13
-
-
0011032162
-
Transient solution for sound radiated into a viscous fluid
-
Blackstock, D.T.: Transient solution for sound radiated into a viscous fluid. J. Acoust. Soc. Am. 41, 1312-1319 (1967)
-
(1967)
J. Acoust. Soc. Am.
, vol.41
, pp. 1312-1319
-
-
Blackstock, D.T.1
-
15
-
-
4043102385
-
Limit theorems for continuous time random walks with infinite mean waiting times
-
Meerschaert, M.M., Scheffler, H.-P.: Limit theorems for continuous time random walks with infinite mean waiting times. J. Appl. Probab. 41(3), 623-638 (2004)
-
(2004)
J. Appl. Probab.
, vol.41
, Issue.3
, pp. 623-638
-
-
Meerschaert, M.M.1
Scheffler, H.-P.2
-
16
-
-
18944388435
-
Fractal travel time estimates for dispersive contaminants
-
Clarke, D.D., Meerschaert, M.M., Wheatcraft, S.W.: Fractal travel time estimates for dispersive contaminants. Ground Water 43(3), 401-407 (2005)
-
(2005)
Ground Water
, vol.43
, Issue.3
, pp. 401-407
-
-
Clarke, D.D.1
Meerschaert, M.M.2
Wheatcraft, S.W.3
-
18
-
-
73549104035
-
Generalized continuous-time random walks, subordination by hitting times, and fractional dynamics
-
Kolokoltsov, V.N.: Generalized continuous-time random walks, subordination by hitting times, and fractional dynamics. Theory Probab. Appl. 53(4), 594-609 (2009)
-
(2009)
Theory Probab. Appl.
, vol.53
, Issue.4
, pp. 594-609
-
-
Kolokoltsov, V.N.1
-
19
-
-
14844311252
-
Advection and dispersion in time and space
-
Baeumer, B., Benson, D.A.,Meerschaert, M.M.: Advection and dispersion in time and space. Phys. A 350(2-4), 245- 262 (2005)
-
(2005)
Phys. A
, vol.350
, Issue.2-4
, pp. 245-262
-
-
Baeumer, B.1
Benson, D.A.2
Meerschaert, M.M.3
-
20
-
-
0000599032
-
Fractional kinetic equations: Solutions and applications
-
Saichev, A.I., Zaslavsky, G.M.: Fractional kinetic equations: solutions and applications. Chaos 7(4), 753-764 (1997)
-
(1997)
Chaos
, vol.7
, Issue.4
, pp. 753-764
-
-
Saichev, A.I.1
Zaslavsky, G.M.2
-
22
-
-
48349113290
-
Triangular array limits for continuous time random walks
-
Meerschaert, M.M., Scheffler, H.-P.: Triangular array limits for continuous time random walks. Stoch. Process. Appl. 118(9), 1606-1633 (2008)
-
(2008)
Stoch. Process. Appl.
, vol.118
, Issue.9
, pp. 1606-1633
-
-
Meerschaert, M.M.1
Scheffler, H.-P.2
-
24
-
-
33751033123
-
Fractional diffusion with two time scales
-
Baeumer, B., Meerschaert, M.M.: Fractional diffusion with two time scales. Physica A 373, 237-251 (2007)
-
(2007)
Physica A
, vol.373
, pp. 237-251
-
-
Baeumer, B.1
Meerschaert, M.M.2
-
25
-
-
78549282374
-
Fractional normal inverse Gaussian diffusion
-
Kumar, A., Meerschaert, M.M., Vellaisamy, P.: Fractional normal inverse Gaussian diffusion. Stat. Probab. Lett. 81(1), 146-152 (2011)
-
(2011)
Stat. Probab. Lett.
, vol.81
, Issue.1
, pp. 146-152
-
-
Kumar, A.1
Meerschaert, M.M.2
Vellaisamy, P.3
-
26
-
-
3242750610
-
Limit theorem for continuous-time random walks with two time scales
-
Meerschaert, M.M., Scheffler, H.-P., Kern, P.: Limit theorem for continuous-time random walks with two time scales. J. Appl. Probab. 41(2), 455-466 (2004)
-
(2004)
J. Appl. Probab.
, vol.41
, Issue.2
, pp. 455-466
-
-
Meerschaert, M.M.1
Scheffler, H.-P.2
Kern, P.3
-
27
-
-
84977255207
-
Linear models of dissipation whose Q is almost frequency independent-II
-
Caputo, M.: Linear models of dissipation whose Q is almost frequency independent-II. Geophys. J. R. Astron. Soc. 13(5), 529-539 (1967)
-
(1967)
Geophys. J. R. Astron. Soc.
, vol.13
, Issue.5
, pp. 529-539
-
-
Caputo, M.1
-
28
-
-
33845373149
-
Finite element analysis of broadband acoustic pulses through inhomogenous media with power law attenuation
-
Wismer, M.G.: Finite element analysis of broadband acoustic pulses through inhomogenous media with power law attenuation. J. Acoust. Soc. Am. 120, 3493-3502 (2006)
-
(2006)
J. Acoust. Soc. Am.
, vol.120
, pp. 3493-3502
-
-
Wismer, M.G.1
-
29
-
-
1642641759
-
Fractional Laplacian time-space models for linear and nonlinear lossy media exhibiting arbitrary frequency power-law dependency
-
Chen, W., Holm, S.: Fractional Laplacian time-space models for linear and nonlinear lossy media exhibiting arbitrary frequency power-law dependency. J. Acoust. Soc. Am. 115, 1424-1430 (2004)
-
(2004)
J. Acoust. Soc. Am.
, vol.115
, pp. 1424-1430
-
-
Chen, W.1
Holm, S.2
-
30
-
-
77956256476
-
Modeling power law absorption and dispersion for acoustic propagation using the fractional Laplacian
-
Treeby, B.E., Cox, B.T.: Modeling power law absorption and dispersion for acoustic propagation using the fractional Laplacian. J. Acoust. Soc. Am. 127, 2741-2748 (2010)
-
(2010)
J. Acoust. Soc. Am.
, vol.127
, pp. 2741-2748
-
-
Treeby, B.E.1
Cox, B.T.2
|