메뉴 건너뛰기




Volumn 43, Issue 6, 2012, Pages 851-861

Modeling river stage-discharge-sediment rating relation using support vector regression

Author keywords

Artificial neural network; River stage discharge rating; Sediment concentration; Support vector regression

Indexed keywords

DATA-DRIVEN APPROACH; GENERALIZATION ERROR; HYDROLOGICAL DATA; KERNEL-BASED LEARNING; LEARNING APPROACH; MODELING TECHNIQUE; REGRESSION PROBLEM; RIVER DISCHARGE; RIVER STAGES; SEDIMENT CONCENTRATION; STAGE-DISCHARGE; STRUCTURAL RISK MINIMIZATION PRINCIPLE; SUPPORT VECTOR REGRESSION (SVR);

EID: 84871381454     PISSN: 00291277     EISSN: None     Source Type: Journal    
DOI: 10.2166/nh.2011.101     Document Type: Article
Times cited : (32)

References (55)
  • 2
    • 40949134707 scopus 로고    scopus 로고
    • Downscaling precipitation to river basin in India for IPCC SRES scenarios using support vector machine
    • DOI 10.1002/joc.1529
    • Anandhi, A., Srinivas, V. V., Nanjundiah, R. S. & Nagesh Kumar, D. 2008 Downscaling precipitation to river basin in India for IPCC SRES scenarios using support vector machine. Intl. J. Climatol. 28, 401-420. (Pubitemid 351411413)
    • (2008) International Journal of Climatology , vol.28 , Issue.3 , pp. 401-420
    • Anandhi, A.1    Srinivas, V.V.2    Nanjundiah, R.S.3    Nagesh Kumar, D.4
  • 3
    • 25844504315 scopus 로고    scopus 로고
    • Task committee on application of artificial neural networks in hydrology. Artificial neural networks in hydrology, i: Preliminary concepts
    • ASCE
    • ASCE 2000 Task Committee on application of artificial neural networks in hydrology. artificial neural networks in hydrology, I: preliminary concepts.J. Hydrol. Eng. ASCE5, 115-123.
    • (2000) J. Hydrol. Eng. ASCE5 , pp. 115-123
  • 4
    • 60249084777 scopus 로고    scopus 로고
    • Generalization performance of support vector machines and neural networks in runoff modeling
    • Behzad, M., Asghari, K., Eazi, M. & Palhang, M. 2009 Generalization performance of support vector machines and neural networks in runoff modeling. Expert Syst. Appl. 36, 7624-7629.
    • (2009) Expert Syst. Appl , vol.36 , pp. 7624-7629
    • Behzad, M.1    Asghari, K.2    Eazi, M.3    Palhang, M.4
  • 5
    • 33746834358 scopus 로고    scopus 로고
    • Identification of support vector machines for runoff modeling
    • Bray, M. & Han, D. 2004 Identification of support vector machines for runoff modeling. J. Hydroinformatics 6, 265-280.
    • (2004) J. Hydroinformatics , vol.6 , pp. 265-280
    • Bray, M.1    Han, D.2
  • 6
    • 27144489164 scopus 로고    scopus 로고
    • A tutorial on support vector machines for pattern recognition
    • Burges, C. J. C. 1998 A tutorial on support vector machines for pattern recognition. Data Mining and Knowledge Discovery 2, 121-167. (Pubitemid 128695475)
    • (1998) Data Mining and Knowledge Discovery , vol.2 , Issue.2 , pp. 121-167
    • Burges, C.J.C.1
  • 7
    • 0038240745 scopus 로고    scopus 로고
    • Artificial neural network approach to flood forecasting in the River Arno
    • DOI 10.1623/hysj.48.3.381.45286
    • Campolo, M., Soldati, A. & Andreussi, P. 2003 Artificial neural network approach to flood forecasting in the River Arno. Hydrol. Sci. J. 48, 381-398. (Pubitemid 36695915)
    • (2003) Hydrological Sciences Journal , vol.48 , Issue.3 , pp. 381-398
    • Campolo, M.1    Soldati, A.2    Andreussi, P.3
  • 8
    • 0035340711 scopus 로고    scopus 로고
    • A counterpropagation fuzzy-neural network modeling approach to real time streamflow prediction
    • Chang, F. J. & Chen, Y. C. 2001A counterpropagation fuzzy-neural network modeling approach to real time streamflow prediction. J. Hydrol. 245, 153-164.
    • (2001) J. Hydrol , vol.245 , pp. 153-164
    • Chang, F.J.1    Chen, Y.C.2
  • 9
    • 0038240755 scopus 로고    scopus 로고
    • Estimation, forecasting and extrapolation of river flows by artificial neural networks
    • Cigizoglu, H. K. 2003 Estimation, forecasting and extrapolation of river flows by artificial neural networks. Hydrol. Sci. J. 48, 349-361.
    • (2003) Hydrol. Sci. J , vol.48 , pp. 349-361
    • Cigizoglu, H.K.1
  • 10
    • 1342310688 scopus 로고    scopus 로고
    • Estimation and forecasting of daily suspended sediment data by multi-layer perceptrons
    • DOI 10.1016/j.advwatres.2003.10.003
    • Cigizoglu, H. K. 2004 Estimation and forecasting of daily suspended sediment data by multi layer perceptrons. Adv. Water Resour. 27, 185-195. (Pubitemid 38256721)
    • (2004) Advances in Water Resources , vol.27 , Issue.2 , pp. 185-195
    • Cigizoglu, H.K.1
  • 11
    • 12544253180 scopus 로고    scopus 로고
    • Flow prediction by three back propagation techniques using k-fold partitioning of neural network training data
    • Cigizoglu, H. K. & Kisi, O. 2005 Flow prediction by three back propagation techniques using K-fold partitioning of neural network training data. Nordic Hydrol. 36, 49-64. (Pubitemid 40620979)
    • (2005) Nordic Hydrology , vol.36 , Issue.1 , pp. 49-64
    • Cigizoglu, H.K.1    Kisi, O.2
  • 12
    • 45449119903 scopus 로고    scopus 로고
    • Estimation of daily suspended sediments using support vector machines
    • DOI 10.1623/hysj.53.3.656
    • Çimen, M. 2008 Estimation of daily suspended sediments using support vector machines. Hydrol. Sci. J. 53, 656-666. (Pubitemid 351850446)
    • (2008) Hydrological Sciences Journal , vol.53 , Issue.3 , pp. 656-666
    • Cimen, M.1
  • 13
    • 70350511636 scopus 로고    scopus 로고
    • Comparison of two different data-driven techniques in modeling lake level fluctuations in turkey
    • Çimen, M. & Kisi, O. 2009 Comparison of two different data-driven techniques in modeling lake level fluctuations in Turkey. J. Hydrol. 378, 253-262.
    • (2009) J. Hydrol , vol.378 , pp. 253-262
    • Çimen, M.1    Kisi, O.2
  • 14
    • 0035450182 scopus 로고    scopus 로고
    • Multivariate reservoir inflow forecasting using temporal neural networks
    • DOI 10.1061/(ASCE)1084-0699(2001)6:5(367)
    • Coulibaly, P., Anctil, F. & Bobee, B. 2001 Multivariate reservoir inflow forecasting using temporal neural networks. J. Hydrol. Eng. ASCE 6, 367-376. (Pubitemid 32818650)
    • (2001) Journal of Hydrologic Engineering , vol.6 , Issue.5 , pp. 367-376
    • Coulibaly, P.1    Anctil, F.2    Bobee, B.3
  • 15
    • 0035398081 scopus 로고    scopus 로고
    • Model induction with support vector machines: Introduction and applications
    • DOI 10.1061/(ASCE)0887-3801(2001)15:3(208), Reportnr 22146
    • Dibike, Y. B., Velickov, S., Solomatine, D. P. & Abbott, M. B. 2001 Model induction with support vector machines: introduction and applications. J. Comput. Civil Eng. ASCE 15, 208-216. (Pubitemid 32583199)
    • (2001) Journal of Computing in Civil Engineering , vol.15 , Issue.3 , pp. 208-216
    • Dibike, Y.B.1    Velickov, S.2    Solomatine, D.3    Abbott, M.B.4
  • 17
    • 35348956876 scopus 로고    scopus 로고
    • Flood forecasting using support vector machines
    • Han, D., Chan, L. & Zhu, N. 2007 Flood forecasting using support vector machines. J. Hydroinformatics 9, 267-276.
    • (2007) J. Hydroinformatics , vol.9 , pp. 267-276
    • Han, D.1    Chan, L.2    Zhu, N.3
  • 18
    • 4944228528 scopus 로고    scopus 로고
    • Technical Report, Department of Computer Science and Information Engineering, National Taiwan University, Taiwan
    • Hsu, C. W., Chang, C. C. & Lin, C. J. 2003 A practical guide to support vector classification. Technical Report, Department of Computer Science and Information Engineering, National Taiwan University, Taiwan.
    • (2003) A Practical Guide to Support Vector Classification
    • Hsu, C.W.1    Chang, C.C.2    Lin, C.J.3
  • 19
    • 17444385970 scopus 로고    scopus 로고
    • A modified neural network for improving river flow prediction
    • Hu, T. S., Lam, K. C. & Ng, S. T. 2005 A modified neural network for improving river flow prediction. Hydrol. Sci. J. 50, 299-318.
    • (2005) Hydrol. Sci. J , vol.50 , pp. 299-318
    • Hu, T.S.1    Lam, K.C.2    Ng, S.T.3
  • 20
    • 0034641121 scopus 로고    scopus 로고
    • River flow prediction using artificial neural networks: Generalisation beyond the calibration range
    • DOI 10.1016/S0022-1694(00)00228-6, PII S0022169400002286
    • Imrie, C. E., Durucan, S. & Korre, A. 2000 River flow prediction using artificial neural networks: generalization beyond the calibration range. J. Hydrol. 233, 138-153. (Pubitemid 30388023)
    • (2000) Journal of Hydrology , vol.233 , Issue.1-4 , pp. 138-153
    • Imrie, C.E.1    Durucan, S.2    Korre, A.3
  • 21
    • 0034746272 scopus 로고    scopus 로고
    • Development of integrated sediment rating curves using anns
    • Jain, S. K. 2001 Development of integrated sediment rating curves using ANNs. J. Hydraul. Eng. ASCE 127, 30-37.
    • (2001) J. Hydraul. Eng. ASCE , vol.127 , pp. 30-37
    • Jain, S.K.1
  • 23
    • 4444228763 scopus 로고    scopus 로고
    • Analysis of soil water retention data using artificial neural networks
    • DOI 10.1061/(ASCE)1084-0699(2004)
    • Jain, S. K., Singh, V. P. & van Genuchten, M. Th. 2004 Analysis of soil water retention data using Artificial Neural Networks. J. Hydrol. Eng. ASCE 9, 415-420. (Pubitemid 39169136)
    • (2004) Journal of Hydrologic Engineering , vol.9 , Issue.5 , pp. 415-420
    • Jain, S.K.1    Singh, V.P.2    Van Genuchten, M.Th.3
  • 24
    • 10944222348 scopus 로고    scopus 로고
    • Use of soft information to describe the relative uncertainty of calibration data in hydrologic models
    • Khadam, I. M. & Kaluarachchi, J. J. 2004 Use of soft information to describe the relative uncertainty of calibration data in hydrologic models. Water Resour. Res. 40, W11505.
    • (2004) Water Resour. Res , vol.40
    • Khadam, I.M.1    Kaluarachchi, J.J.2
  • 25
    • 33645864343 scopus 로고    scopus 로고
    • Application of support vector machine in lake water level prediction
    • Khan, M. S. & Coulibaly, P. 2006 Application of support vector machine in lake water level prediction. J. Hydrol. Eng. 11, 199-205.
    • (2006) J. Hydrol. Eng , vol.11 , pp. 199-205
    • Khan, M.S.1    Coulibaly, P.2
  • 26
    • 23044459648 scopus 로고    scopus 로고
    • Suspended sediment estimation using neuro-fuzzy and neural network approaches
    • DOI 10.1623/hysj.2005.50.4.683
    • Kisi, O. 2005 Suspended sediment estimation using neuro-fuzzy and neural network approaches. Hydrol. Sci. J. 50, 683-696. (Pubitemid 41057429)
    • (2005) Hydrological Sciences Journal , vol.50 , Issue.4 , pp. 683-696
    • Kisi, O.1
  • 27
    • 34548146808 scopus 로고    scopus 로고
    • Streamflow forecasting using different artificial neural network algorithms
    • DOI 10.1061/(ASCE)1084-0699(2007)12:5(532)
    • Kisi, O. 2007 Streamflow forecasting using different artificial neural network algorithms. J. Hydrol. Eng. ASCE 12, 532-539. (Pubitemid 47307903)
    • (2007) Journal of Hydrologic Engineering , vol.12 , Issue.5 , pp. 532-539
    • Kisi, O.1
  • 28
    • 70349559015 scopus 로고    scopus 로고
    • Evapotranspiration modelling using support vector machines
    • Kisi, O. & Çimen, M. 2009 Evapotranspiration modelling using support vector machines. Hydrol. Sci. J. 54, 918-928.
    • (2009) Hydrol. Sci. J , vol.54 , pp. 918-928
    • Kisi, O.1    Çimen, M.2
  • 29
    • 51149118683 scopus 로고    scopus 로고
    • Using support vector machines to develop pedotransfer functions for water retention of soils in poland
    • Lamorski, K., Pachepsky, Y., Slawinski, C. & Walczak, R. T. 2008 Using support vector machines to develop pedotransfer functions for water retention of soils in Poland. Soil Sci. Soc. Am. J. 72, 1243-1247.
    • (2008) Soil Sci. Soc. Am. J , vol.72 , pp. 1243-1247
    • Lamorski, K.1    Pachepsky, Y.2    Slawinski, C.3    Walczak, R.T.4
  • 30
    • 85034860364 scopus 로고    scopus 로고
    • Improved non-linear transfer function and neural network methods of flow routing for real-Time forecasting
    • Lekkas, D. F., Imrie, C. E. & Lees, M. J. 2001 Improved non-linear transfer function and neural network methods of flow routing for real-Time forecasting. J. Hydroinformatics 3, 153-164.
    • (2001) J. Hydroinformatics , vol.3 , pp. 153-164
    • Lekkas, D.F.1    Imrie, C.E.2    Lees, M.J.3
  • 31
    • 77954378095 scopus 로고    scopus 로고
    • A modified support vector machine based prediction model on streamflow at the shihmen reservoir, taiwan
    • Li, P.-H., Kwon, H.-H., Sun, L., Lall, U. & Kaoa, J.-J. 2010 A modified support vector machine based prediction model on streamflow at the Shihmen Reservoir, Taiwan. Intl. J. Climatol. 30, 1256-1268.
    • (2010) Intl. J. Climatol , vol.30 , pp. 1256-1268
    • Li, P.-H.1    Kwon, H.-H.2    Sun, L.3    Lall, U.4    Kaoa, J.-J.5
  • 32
    • 33746830757 scopus 로고    scopus 로고
    • Using support vector machines for long-term discharge prediction
    • DOI 10.1623/hysj.51.4.599
    • Lin, J.-Y., Cheng, C.-T. & Chau, K.-W. 2006 Using support vector machines for long-Term discharge prediction. Hydrol. Sci. J. 51, 599-612. (Pubitemid 44178040)
    • (2006) Hydrological Sciences Journal , vol.51 , Issue.4 , pp. 599-612
    • Lin, J.-Y.1    Cheng, C.-T.2    Chau, K.-W.3
  • 34
    • 77951662436 scopus 로고    scopus 로고
    • Potential of support vector regression for prediction of monthly streamflow using endogenous property
    • Maity, R., Bhagwat, P. P. & Bhatnagar, A. 2010 Potential of support vector regression for prediction of monthly streamflow using endogenous property. Hydrol. Process. 24, 917-923.
    • (2010) Hydrol. Process , vol.24 , pp. 917-923
    • Maity, R.1    Bhagwat, P.P.2    Bhatnagar, A.3
  • 35
    • 1942490118 scopus 로고    scopus 로고
    • A neuro-fuzzy computing technique for modeling hydrological time series
    • DOI 10.1016/j.jhydrol.2003.12.010, PII S0022169403005134
    • Nayak, P. C., Sudheer, K. P., Rangan, D. M. & Ramasastri, K. S. 2004 Neuro-fuzzy computing technique for modelling hydrological time series. J. Hydrol. 291, 52-66. (Pubitemid 38492436)
    • (2004) Journal of Hydrology , vol.291 , Issue.1-2 , pp. 52-66
    • Nayak, P.C.1    Sudheer, K.P.2    Rangan, D.M.3    Ramasastri, K.S.4
  • 36
    • 0031334889 scopus 로고    scopus 로고
    • An improved training algorithm for support vector machines. In: Proceedings of
    • Institute of Electrical and Electronics Engineers, New York
    • Osuna, E., Freund, R. & Girosi, F. 1997 An improved training algorithm for support vector machines. In: Proceedings of IEEE Workshop on Neural Networks for Signal Processing 7, Institute of Electrical and Electronics Engineers, New York, pp. 276-285.
    • (1997) IEEE Workshop on Neural Networks for Signal Processing , vol.7 , pp. 276-285
    • Osuna, E.1    Freund, R.2    Girosi, F.3
  • 37
    • 70549092056 scopus 로고    scopus 로고
    • Forecasting of monthly streamflows based on artificial neural networks
    • Prada-Sarmiento, F. & Obregón-Neira, N. 2009 Forecasting of monthly streamflows based on artificial neural networks. J. Hydrol. Eng. ASCE 14, 1390-1395.
    • (2009) J. Hydrol. Eng. ASCE , vol.14 , pp. 1390-1395
    • Prada-Sarmiento, F.1    Obregón-Neira, N.2
  • 38
    • 48649085521 scopus 로고    scopus 로고
    • Estimation and forecasting of daily suspended sediment data using wavelet-neural networks
    • Partal, T. & Cigizoglu, H. K. 2009 Estimation and forecasting of daily suspended sediment data using wavelet-neural networks. J. Hydrol. 358, 317-331.
    • (2009) J. Hydrol , vol.358 , pp. 317-331
    • Partal, T.1    Cigizoglu, H.K.2
  • 39
    • 21444442416 scopus 로고    scopus 로고
    • Application of least squares vector machines in modelling water vapor and carbon dioxide fluxes over a cropland
    • DOI 10.1631/jzus.2005.B0491
    • Qin, Z., Qiang, Y U., Jun, L., Zhi-yi, W. & Bing-min, H. 2005 Application of least squares vector machines in modelling water vapor and carbon dioxide fluxes over a cropland. J. Zhejiang Univ. SCI 6B (6), 491-495. (Pubitemid 40915667)
    • (2005) Journal of Zhejiang University: Science , vol.6 , Issue.6 , pp. 491-495
    • Qin, Z.1    Yu, Q.2    Li, J.3    Wu, Z.-Y.4    Hu, B.-M.5
  • 40
  • 41
    • 39549084921 scopus 로고    scopus 로고
    • Estimation of removal efficiency for settling basins using neural networks and support vector machines
    • DOI 10.1061/(ASCE)1084-0699(2008)13:3(146)
    • Singh, K. K., Pal, M., Ojha, C. S. P. & Singh, V. P. 2008 Estimation of removal efficiency for settling basins using neural networks and support vector machines. J. Hydrol. Eng. ASCE 13, 146-155. (Pubitemid 351279631)
    • (2008) Journal of Hydrologic Engineering , vol.13 , Issue.3 , pp. 146-155
    • Singh, K.K.1    Mahesh, P.2    Ojha, C.S.P.3    Singh, V.P.4
  • 42
    • 27744590254 scopus 로고    scopus 로고
    • Discharge rating curve extension - A new approach
    • DOI 10.1007/s11269-005-6811-2
    • Sivapragasam, C. & Muttil, N. 2005 Discharge rating curve extension: a new approach. Water Resour. Manage. 19, 505-520. (Pubitemid 41600177)
    • (2005) Water Resources Management , vol.19 , Issue.5 , pp. 505-520
    • Sivapragasam, C.1    Muttil, N.2
  • 44
    • 0037565156 scopus 로고    scopus 로고
    • Model trees as an alternative to neural networks in rainfall-runoff modelling
    • Solomatine, D. P. & Dulal, K. N. 2003 Model trees as an alternative to neural networks in rainfall-runoff modelling. Hydrol. Sci. J. 48, 399-411.
    • (2003) Hydrol. Sci. J , vol.48 , pp. 399-411
    • Solomatine, D.P.1    Dulal, K.N.2
  • 47
    • 33750018142 scopus 로고    scopus 로고
    • Downscaling of precipitation for climate change scenarios: A support vector machine approach
    • DOI 10.1016/j.jhydrol.2006.04.030, PII S0022169406002368
    • Tripathi, S., Srinivas, V. V. & Nanjundian, R. S. 2006 Downscaling of precipitation for climate change scenarios: a support vector machine approach. J. Hydrol. 330, 621-640. (Pubitemid 44573197)
    • (2006) Journal of Hydrology , vol.330 , Issue.3-4 , pp. 621-640
    • Tripathi, S.1    Srinivas, V.V.2    Nanjundiah, R.S.3
  • 51
    • 84887252594 scopus 로고    scopus 로고
    • Support vector method for function approximation, regression estimation, and signal processing
    • M. Mozer, M. Jordan & T. Petsche, eds). MIT Press, Cambridge, MA, USA
    • Vapnik, V., Golwich, S. & Smola, A. J. 1997 Support vector method for function approximation, regression estimation, and signal processing. In: Advances in Neural Information Processing Systems 9 (M. Mozer, M. Jordan & T. Petsche, eds). MIT Press, Cambridge, MA, USA, pp. 281-287.
    • (1997) Advances in Neural Information Processing Systems , vol.9 , pp. 281-287
    • Vapnik, V.1    Golwich, S.2    Smola, A.J.3
  • 52
    • 0037388711 scopus 로고    scopus 로고
    • Detection of conceptual model rainfall-runoff processes inside an artificial neural network
    • DOI 10.1623/hysj.48.2.163.44699
    • Wilby, R. L., Abrahart, R. J. & Dawson, C. W. 2003 Detection of conceptual model rainfall-runoff processes inside an artificial neural network. Hydrol. Sci. J. 48, 163-181. (Pubitemid 36429884)
    • (2003) Hydrological Sciences Journal , vol.48 , Issue.2 , pp. 163-181
    • Wilby, R.L.1    Abrahart, R.J.2    Dawson, C.W.3
  • 53
    • 47949121319 scopus 로고    scopus 로고
    • River stage prediction based on a distributed support vector regression
    • Wu, C. L., Chau, K. W. & Li, Y. S. 2008 River stage prediction based on a distributed support vector regression. J. Hydrol. 358, 96-111.
    • (2008) J. Hydrol , vol.358 , pp. 96-111
    • Wu, C.L.1    Chau, K.W.2    Li, Y.S.3
  • 54
    • 0033019602 scopus 로고    scopus 로고
    • Short term streamflow forecasting using artificial neural networks
    • DOI 10.1016/S0022-1694(98)00242-X, PII S002216949800242X
    • Zealand, C. M., Burn, D. H. & Simonovic, S. P. 1999 Short term stream flow forecasting using artificial neural networks. J. Hydrol. 214, 32-48. (Pubitemid 29087395)
    • (1999) Journal of Hydrology , vol.214 , Issue.1-4 , pp. 32-48
    • Zealand, C.M.1    Burn, D.H.2    Simonovic, S.P.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.