메뉴 건너뛰기




Volumn 48, Issue 12, 2012, Pages

Reducing hydrologic model uncertainty in monthly streamflow predictions using multimodel combination

Author keywords

[No Author keywords available]

Indexed keywords

CANDIDATE MODELS; DIFFERENT STRUCTURE; ERROR VARIANCE; HETEROSCEDASTIC; HIGHER WEIGHT; HYDROLOGIC MODELS; HYDROLOGICAL MODELS; MISSPECIFICATION; MODEL ERRORS; MODEL PREDICTION; MONTHLY FLOW; MULTI-MODEL; MULTI-MODEL COMBINATION; MULTIPLE MODELS; OPTIMAL MODEL; OPTIMAL WEIGHT; STREAMFLOW PREDICTION; VARIABLE INFILTRATION CAPACITY MODELS; VIC MODEL;

EID: 84871377620     PISSN: 00431397     EISSN: 19447973     Source Type: Journal    
DOI: 10.1029/2011WR011380     Document Type: Article
Times cited : (40)

References (57)
  • 1
    • 0031260222 scopus 로고    scopus 로고
    • Application of regional parameter estimation schemes to simulate the water balance of a large continental river
    • DOI 10.1016/S0022-1694(96)03263-5, PII S0022169496032635
    • Abdulla, F. A. and D. P. Lettenmaier (1997), Application of regional parameter estimation schemes to simulate the water balance of a large continental river, J. Hydrol., 197, 258-285, doi:10.1016/S0022-1694(96)03263-5. (Pubitemid 27335613)
    • (1997) Journal of Hydrology , vol.197 , Issue.1-4 , pp. 258-285
    • Abdulla, F.A.1    Lettenmaier, D.P.2
  • 2
    • 0021640759 scopus 로고
    • On the treatment of evapotranspiration, soil moisture accounting, and aquifer recharge in monthly water balance models.
    • Alley, W. M. (1984), On the treatment of evapotranspiration, soil moisture accounting, and aquifer recharge in monthly water balance models, Water Resour. Res., 20(8), 1137-1149. (Pubitemid 16264668)
    • (1984) Water Resources Research , vol.20 , Issue.8 , pp. 1137-1149
    • Alley, W.M.1
  • 3
    • 4143128903 scopus 로고    scopus 로고
    • Calibration of a semi-distributed hydrologic model for streamflow estimation along a river system
    • DOI 10.1016/j.jhydrol.2004.03.033, PII S0022169404002410
    • Ajami, N. K., H. V. Gupta, T. Wagener, and S. Sorooshian (2004), Calibration of a semi-distributed hydrologic model for streamflow estimation along a river system, J. Hydrol., 298, 112-135. (Pubitemid 39098770)
    • (2004) Journal of Hydrology , vol.298 , Issue.1-4 , pp. 112-135
    • K. Ajami, N.1    Gupta, H.2    Wagener, T.3    Sorooshian, S.4
  • 4
    • 33847624519 scopus 로고    scopus 로고
    • An integrated hydrologic Bayesian multimodel combination framework: Confronting input, parameter, and model structural uncertainty in hydrologic prediction
    • DOI 10.1029/2005WR004745
    • Ajami, N. K., Q. Duan, and S. Sorooshian (2007), An integrated hydrologic Bayesian multimodel combination framework: Confronting input, parameter, and model structural uncertainty in hydrologic prediction, Water Resour. Res., 43, W01403, doi:10.1029/2005WR004745. (Pubitemid 46364281)
    • (2007) Water Resources Research , vol.43 , Issue.1
    • Ajami, N.K.1    Duan, Q.2    Sorooshian, S.3
  • 5
    • 0027009437 scopus 로고
    • The future of distributed models: Model calibration and uncertainty prediction
    • Beven, K. J., and A. M. Binley (1992), The future of distributed models: Model calibration and uncertainty prediction, Hydrol. Process, 6, 279-298.
    • (1992) Hydrol. Process , vol.6 , pp. 279-298
    • Beven, K.J.1    Binley, A.M.2
  • 7
    • 72149123038 scopus 로고    scopus 로고
    • Estimating the uncertain mathematical structure of a water balance model via Bayesian data assimilation
    • doi:10.1029/2007WR006749
    • Bulygina, N., and H. Gupta (2009), Estimating the uncertain mathematical structure of a water balance model via Bayesian data assimilation, Water Resour. Res., 45(12), W00B13, doi:10.1029/2007WR006749.
    • (2009) Water Resour. Res , vol.45 , Issue.12
    • Bulygina, N.1    Gupta, H.2
  • 8
    • 0033471382 scopus 로고    scopus 로고
    • An interior point algorithm for large-scale nonlinear programming
    • PII S1052623497325107
    • Byrd, R. H., M. E. Hribarand, and J. Nocedal (1999), An interior point algorithm for large-scale nonlinear programming, SIAM J. Optim., 9(4), 877-900. (Pubitemid 129489310)
    • (1999) SIAM Journal on Optimization , vol.9 , Issue.4 , pp. 877-900
    • Byrd, R.H.1    Hribar, M.E.2    Nocedal, J.3
  • 9
    • 4143121217 scopus 로고    scopus 로고
    • Impacts of parametric and radar rainfall uncertainty on the ensemble streamflow simulations of a distributed hydrologic model
    • DOI 10.1016/j.jhydrol.2004.03.036, PII S0022169404002458
    • Carpenter, T. M., and K. P. Georgakakos (2004), Impacts of parametric and radar rainfall uncertainty on the ensemble streamflow simulations of a distributed hydrologic model, J. Hydrol., 298(1-4), 202-221. (Pubitemid 39098774)
    • (2004) Journal of Hydrology , vol.298 , Issue.1-4 , pp. 202-221
    • Carpenter, T.M.1    Georgakakos, K.P.2
  • 10
    • 72149133064 scopus 로고    scopus 로고
    • Multisite seasonal forecast of arid river flows using a dynamic model combination approach
    • doi:10.1029/2008WR007510
    • Chowdhury, S., and A. Sharma (2009), Multisite seasonal forecast of arid river flows using a dynamic model combination approach, Water Resour. Res., 45, W10428, doi:10.1029/2008WR007510.
    • (2009) Water Resour. Res , vol.45
    • Chowdhury, S.1    Sharma, A.2
  • 11
    • 34250263445 scopus 로고
    • Optimal smoothing of noisy data with spline functions
    • Craven, P., and G. Whaba (1979), Optimal smoothing of noisy data with spline functions, Numer. Math., 31, 377-403.
    • (1979) Numer. Math , vol.31 , pp. 377-403
    • Craven, P.1    Whaba, G.2
  • 13
    • 77955584233 scopus 로고    scopus 로고
    • Improving the prediction of winter precipitation and temperature over the continental United States: Role of ENSO state in developing multimodel combinations
    • doi:10.1175/2009MWR3112.1
    • Devineni, N., and A. Sankarasubramanian (2010), Improving the prediction of winter precipitation and temperature over the continental United States: Role of ENSO state in developing multimodel combinations, Mon. Weather Rev., 138, 2447-2468, doi:10.1175/2009MWR3112.1.
    • (2010) Mon. Weather Rev , vol.138 , pp. 2447-2468
    • Devineni, N.1    Sankarasubramanian, A.2
  • 14
    • 55249108293 scopus 로고    scopus 로고
    • Multimodel ensembles of streamflow forecasts: Role of predictor state in developing optimal combinations
    • doi:10.1029/2006WR005855
    • Devineni, N., A. Sankarasubramanian, and S. Ghosh (2008), Multimodel ensembles of streamflow forecasts: Role of predictor state in developing optimal combinations, Water Resour. Res., 44, W09404, doi:10.1029/2006WR005855.
    • (2008) Water Resour. Res , vol.44
    • Devineni, N.1    Sankarasubramanian, A.2    Ghosh, S.3
  • 15
    • 0026445234 scopus 로고
    • Effective and efficient global optimization for conceptual rainfall-runoff models
    • doi:10.1029/91WR02985
    • Duan, Q., S. Sorooshian, and H. V. Gupta (1992), Effective and efficient global optimization for conceptual rainfall-runoff models, Water Resour. Res., 28(4), 1015-1031, doi:10.1029/91WR02985.
    • (1992) Water Resour. Res , vol.28 , Issue.4 , pp. 1015-1031
    • Duan, Q.1    Sorooshian, S.2    Gupta, H.V.3
  • 16
    • 33847274843 scopus 로고    scopus 로고
    • Multi-model ensemble hydrologic prediction using Bayesian model averaging
    • DOI 10.1016/j.advwatres.2006.11.014, PII S030917080600220X
    • Duan, Q., N. K. Ajami, X. Gao, and S. Sorooshian (2007), Multi-model ensemble hydrologic prediction using Bayesian model averaging, Adv. Water Resour., 30(5), 1371-1386, doi:10.1016/j.advwatres.2006. 11.014. (Pubitemid 46323445)
    • (2007) Advances in Water Resources , vol.30 , Issue.5 , pp. 1371-1386
    • Duan, Q.1    Ajami, N.K.2    Gao, X.3    Sorooshian, S.4
  • 17
    • 0034987501 scopus 로고    scopus 로고
    • Stochastic capture zone delineation within the generalized likelihood uncertainty estimation methodology: Conditioning on head observations
    • DOI 10.1029/2000WR900351
    • Feyen, L., K. J. Beven, F. De Smedt, and J. Freer (2001), Stochastic capture zone delineation within the generalized likelihood uncertainty estimation methodology: Conditioning on head observations, Water Resour. Res., 37(3), 625-638, doi:10.1029/2000WR900351. (Pubitemid 32526062)
    • (2001) Water Resources Research , vol.37 , Issue.3 , pp. 625-638
    • Feyen, L.1    Beven, K.J.2    De Smedt, F.3    Freer, J.4
  • 19
    • 4143139874 scopus 로고    scopus 로고
    • Towards the characterization of streamflow simulation uncertainty through multimodel ensembles
    • DOI 10.1016/j.jhydrol.2004.03.037, PII S002216940400246X
    • Georgakakos, K. P., D.-J. Seo, H. V. Gupta, J. Schaake, and M. B. Butts (2004), Characterising streamflow simulation uncertainty through multi-model ensembles. J. Hydrol., 298(1-4), 222-241. (Pubitemid 39098775)
    • (2004) Journal of Hydrology , vol.298 , Issue.1-4 , pp. 222-241
    • Georgakakos, K.P.1    Seo, D.-J.2    Gupta, H.3    Schaake, J.4    Butts, M.B.5
  • 21
    • 0034348590 scopus 로고    scopus 로고
    • A Multistep Automatic Calibration Scheme for River Forecasting Models
    • DOI 10.1175/1525-7541(2000)001<0524:AMACSF>2.0.CO;2
    • Hogue, T. S., S. Sorooshian, H. V. Gupta, A. Holz, and D. Braatz (2000), A multistep automatic calibration scheme for river forecasting models, J. Hydrometeorol., 1, 524-542. (Pubitemid 33231479)
    • (2000) Journal of Hydrometeorology , vol.1 , Issue.6 , pp. 524-542
    • Hogue, T.S.1    Sorooshian, S.2    Gupta, H.3    Holz, A.4    Braatz, D.5
  • 22
    • 41149132113 scopus 로고    scopus 로고
    • Calibration of hydrological model GR2M using Bayesian uncertainty analysis
    • DOI 10.1029/2007WR005949
    • Huard, D., and A. Mailhot (2008), Calibration of hydrological model GR2M using Bayesian uncertainty analysis, Water Resour. Res., 44, W02424, 19 pp., doi:10.1029/2007WR005949. (Pubitemid 351442502)
    • (2008) Water Resources Research , vol.44 , Issue.2
    • Huard, D.1    Mailhot, A.2
  • 23
    • 33646495330 scopus 로고    scopus 로고
    • Bayesian analysis of input uncertainty in hydrological modeling 1. Theory
    • doi:10.1029/2005WR004368
    • Kavetski, D., G. Kuczera, and S. W. Franks (2006), Bayesian analysis of input uncertainty in hydrological modeling: 1. Theory, Water Resour. Res., 42, W03407, doi:10.1029/2005WR004368.
    • (2006) Water Resour. Res , vol.42
    • Kavetski, D.1    Kuczera, G.2    Franks, S.W.3
  • 25
    • 0032214428 scopus 로고    scopus 로고
    • Monte Carlo assessment of parameter uncertainty in conceptual catchment models: The Metropolis algorithm
    • DOI 10.1016/S0022-1694(98)00198-X, PII S002216949800198X
    • Kuczera, G., and E. Parent (1998), Monte Carlo assessment of parameter uncertainty in conceptual catchment models: The Metropolis algorithm, J. Hydrol., 211, 69-85. (Pubitemid 29014557)
    • (1998) Journal of Hydrology , vol.211 , Issue.1-4 , pp. 69-85
    • Kuczera, G.1    Parent, E.2
  • 26
    • 33750474092 scopus 로고    scopus 로고
    • Towards a Bayesian total error analysis of conceptual rainfall-runoff models: Characterising model error using storm-dependent parameters
    • DOI 10.1016/j.jhydrol.2006.05.010, PII S0022169406002745
    • Kuczera, G., D. Kavetski, S. Franks, and M. Thyer (2006), Towards a Bayesian total error analysis of conceptual rainfall-runoff models: Characterising model error using storm-dependent parameters, J. Hydrol., 331(1-2), 161-177. (Pubitemid 44646456)
    • (2006) Journal of Hydrology , vol.331 , Issue.1-2 , pp. 161-177
    • Kuczera, G.1    Kavetski, D.2    Franks, S.3    Thyer, M.4
  • 27
    • 0028602239 scopus 로고
    • A simple hydrologically based model of land surface water and energy fluxes for GSMs
    • Liang, X., D. P. Lettenmaier, E. F. Wood, and S. J. Burges (1994), A simple hydrologically based model of land surface water and energy fluxes for GSMs, J. Geophys. Res., 99(D7), 14,415-14,428.
    • (1994) J. Geophys. Res , vol.99 , Issue.D7 , pp. 14415-14428
    • Liang, X.1    Lettenmaier, D.P.2    Wood, E.F.3    Burges, S.J.4
  • 28
    • 0030390088 scopus 로고    scopus 로고
    • One-dimensional statistical dynamic representation of sub-grid spatial variability of precipitation in the two layer variable infiltration capacity model
    • Liang, X., D. P. Lettenmaier, and E. F. Wood (1996), One-dimensional statistical dynamic representation of sub-grid spatial variability of precipitation in the two layer variable infiltration capacity model, J. Geophys. Res., 101, 21,403-21,422.
    • (1996) J. Geophys. Res , vol.101 , pp. 21403-21422
    • Liang, X.1    Lettenmaier, D.P.2    Wood, E.F.3
  • 29
    • 28244439991 scopus 로고    scopus 로고
    • Hydrological model selection: A Bayesian alternative
    • DOI 10.1029/2004WR003719, W10422
    • Marshall, L., D. Nott, and A. Sharma (2005), Hydrological model selection: A Bayesian alternative, Water Resour. Res., 41(10), W10422, doi:10.1029/2004WR003719. (Pubitemid 41705706)
    • (2005) Water Resources Research , vol.41 , Issue.10
    • Marshall, L.1    Nott, D.2    Sharma, A.3
  • 30
    • 33846370929 scopus 로고    scopus 로고
    • Modeling the catchment via mixtures: Issues of model specification and validation
    • DOI 10.1029/2005WR004613
    • Marshall, L., A. Sharma, and D. Nott (2006), Modeling the catchment via mixtures: Issues of model specification and validation, Water Resour. Res., 42(11), W11409, doi:10.1029/2005WR004613. (Pubitemid 46134880)
    • (2006) Water Resources Research , vol.42 , Issue.11
    • Marshall, L.1    Sharma, A.2    Nott, D.3
  • 31
    • 34047147929 scopus 로고    scopus 로고
    • Towards dynamic catchment modelling: A Bayesian hierarchical mixtures of experts framework
    • DOI 10.1002/hyp.6294
    • Marshall, L., D. Nott, and A. Sharma (2007), Towards dynamic catchment modeling: A Bayesian hierarchical mixtures of experts framework, Hydrol. Process., 21(7), 847-861. (Pubitemid 46510578)
    • (2007) Hydrological Processes , vol.21 , Issue.7 , pp. 847-861
    • Marshall, L.1    Nott, D.2    Sharma, A.3
  • 32
    • 84998693655 scopus 로고    scopus 로고
    • Uncertainty of hydrological predictions
    • edited by P. Wilderer Academic, Oxford
    • Montanari, A. (2011), Uncertainty of hydrological predictions, in Treatise on Water Science, vol. 2, edited by P. Wilderer, pp. 459-478, Academic, Oxford.
    • (2011) Treatise on Water Science , vol.2 , pp. 459-478
    • Montanari, A.1
  • 33
    • 2542555104 scopus 로고    scopus 로고
    • A stochastic approach for assessing the uncertainty of rainfall-runoff simulations
    • doi:10.1029/2003WR002540
    • Montanari, A., and A. Brath (2004), A stochastic approach for assessing the uncertainty of rainfall-runoff simulations, Water Resour. Res., 40, W01106, doi:10.1029/2003WR002540.
    • (2004) Water Resour. Res , vol.40
    • Montanari, A.1    Brath, A.2
  • 34
    • 11944268965 scopus 로고    scopus 로고
    • Dual state-parameter estimation of hydrological models using ensemble Kalman filter
    • DOI 10.1016/j.advwatres.2004.09.002, PII S0309170804001605
    • Moradkhani, H., S. Sorooshian, H. V. Gupta, and P. Houser (2005), Dual state-parameter estimation of hydrologic models using ensemble Kalman filter, Adv. Water Resour., 28, 135-147. (Pubitemid 40102390)
    • (2005) Advances in Water Resources , vol.28 , Issue.2 , pp. 135-147
    • Moradkhani, H.1    Sorooshian, S.2    Gupta, H.V.3    Houser, P.R.4
  • 35
    • 84864231563 scopus 로고    scopus 로고
    • Climate, streamflow and water quality interactions over the southeastern US
    • Oh, J., and A. Sankarasubramanian (2012), Climate, streamflow and water quality interactions over the southeastern US, Hydrol. Earth Syst. Sci., 17, 2285-2298.
    • (2012) Hydrol. Earth Syst. Sci , vol.17 , pp. 2285-2298
    • Oh, J.1    Sankarasubramanian, A.2
  • 36
    • 33748041654 scopus 로고    scopus 로고
    • Dynamic averaging of rainfall-runoff model simulations from complementary model parameterizations
    • DOI 10.1029/2005WR004636
    • Oudin, L., V. Andreassian, T. Mathevet, C. Perrin, and C. Michel (2006), Dynamic averaging of rainfall-runoff model simulations from complementary model parameterizations, Water Resour. Res., 42(7), W07410, 10 pp, doi:10.1029/2005WR004636. (Pubitemid 44300477)
    • (2006) Water Resources Research , vol.42 , Issue.7
    • Oudin, L.1    Andreassian, V.2    Mathevet, T.3    Perrin, C.4    Michel, C.5
  • 37
    • 34247602978 scopus 로고    scopus 로고
    • A stochastic nonparametric technique for space-time disaggregation of streamflows
    • DOI 10.1029/2005WR004721
    • Prairie, J., B. Rajagopalan, U. Lall, and T. Fulp (2007), A stochastic non-parametric technique for space-time disaggregation of streamflows, Water Resour. Res., 43, W03432, 10 pp., doi:10.1029/2005WR004721. (Pubitemid 46682802)
    • (2007) Water Resources Research , vol.43 , Issue.3
    • Prairie, J.1    Rajagopalan, B.2    Lall, U.3    Fulp, T.4
  • 38
    • 0036646424 scopus 로고    scopus 로고
    • Categorical climate forecasts through regularization and optimal combination of multiple GCM ensembles
    • Rajagopalan, B., U. Lall, and S. E. Zebiak (2002), Categorical climate forecasts through regularization and optimal combination of multiple GCM ensembles, Mon. Weather Rev., 130, 1792-1811. (Pubitemid 34825245)
    • (2002) Monthly Weather Review , vol.130 , Issue.7 , pp. 1792-1811
    • Rajagopalan, B.1    Lall, U.2    Zebiak, S.E.3
  • 39
    • 72149112778 scopus 로고    scopus 로고
    • Analyzing input and structural uncertainty of nonlinear dynamic models with stochastic, time-dependent parameters
    • 19 pp doi:10.1029/2009 WR007814
    • Reichert, P., and J. Mieleitner (2009), Analyzing input and structural uncertainty of nonlinear dynamic models with stochastic, time-dependent parameters, Water Resour. Res., 45, W10402, 19 pp., doi:10.1029/2009 WR007814.
    • (2009) Water Resour. Res , vol.45
    • Reichert, P.1    Mieleitner, J.2
  • 40
    • 77950177246 scopus 로고    scopus 로고
    • Understanding predictive uncertainty in hydrologic modeling: The challenge of identifying input and structural errors
    • doi:10.1029/2009WR008328
    • Renard, B., D. Kavetski, G. Kuczera, M. Thyer, and S. W. Franks (2010), Understanding predictive uncertainty in hydrologic modeling: The challenge of identifying input and structural errors, Water Resour. Res., 46, W05521, doi:10.1029/2009WR008328.
    • (2010) Water Resour. Res , vol.46
    • Renard, B.1    Kavetski, D.2    Kuczera, G.3    Thyer, M.4    Franks, S.W.5
  • 41
    • 0037054650 scopus 로고    scopus 로고
    • Comment on the paper: Basin hydrologic response relations to distributed physiographic descriptors and climate
    • Sankarasubramanian, A., and R. M. Vogel (2002), Comment on the paper: Basin hydrologic response relations to distributed physiographic descriptors and climate, J. Hydrol., 263, 257-261.
    • (2002) J. Hydrol , vol.263 , pp. 257-261
    • Sankarasubramanian, A.1    Vogel, R.M.2
  • 42
    • 72149090368 scopus 로고    scopus 로고
    • Improved water allocation utilizing probabilistic climate forecasts: Short term water contracts in a risk management framework
    • doi:10.1029/2009WR007821
    • Sankarasubramanian, A., U. Lall, F. D. Souza Filho, and A. Sharma (2009), Improved water allocation utilizing probabilistic climate forecasts: Short term water contracts in a risk management framework, Water Resour. Res., 45, W11409, doi:10.1029/2009WR007821.
    • (2009) Water Resour. Res , vol.45
    • Sankarasubramanian, A.1    Lall, U.2    Souza Filho, F.D.3    Sharma, A.4
  • 43
    • 0031259688 scopus 로고    scopus 로고
    • Methods for combining the outputs of different rainfall-runoff models
    • DOI 10.1016/S0022-1694(96)03259-3, PII S0022169496032593
    • Shamseldin, A. Y., K. M. O'Connor, and G. C. Liang (1997), Methods for combining the outputs of different rainfall-runoff models, J. Hydrol., 197, 203-229. (Pubitemid 27335611)
    • (1997) Journal of Hydrology , vol.197 , Issue.1-4 , pp. 203-229
    • Shamseldin, A.Y.1    O'Connor, K.M.2    Liang, G.C.3
  • 44
    • 4143059262 scopus 로고    scopus 로고
    • The distributed model intercomparison project (DMIP): Motivation and experiment design
    • DOI 10.1016/j.jhydrol.2004.03.040, PII S0022169404002379
    • Smith, M. B., D.-J. Seo, V. Koren, S. Reed, Z. Zhang, and F. Moreda (2004), The Distributed Model Intercomparison Project (DMIP): motivation and experiment design, J. Hydrol., 298(1-4), 4-26. (Pubitemid 39098766)
    • (2004) Journal of Hydrology , vol.298 , Issue.1-4 , pp. 4-26
    • Smith, M.B.1    Seo, D.-J.2    Koren, V.I.3    Reed, S.M.4    Zhang, Z.5    Duan, Q.6    Moreda, F.7    Cong, S.8
  • 46
    • 0034210782 scopus 로고    scopus 로고
    • Spatial scaling properties of annual streamflow in the United States
    • Vogel, R. M., and A. Sankarasubramanian (2000), Scaling properties of annual streamflow in the continental United States, J. Hydrol. Sci., 45, 465-476. (Pubitemid 30452836)
    • (2000) Hydrological Sciences Journal , vol.45 , Issue.3 , pp. 465-476
    • Vogel, R.M.1    Sankarasubramanian, A.2
  • 47
    • 1542436773 scopus 로고    scopus 로고
    • Validation of a watershed model without calibration
    • doi:10.1029/2002WR001940
    • Vogel, R. M., and A. Sankarasubramanian (2003), Validation of a watershed model without calibration, Water Resour. Res., 39(10), 1292, doi:10.1029/2002WR001940.
    • (2003) Water Resour. Res , vol.39 , Issue.10 , pp. 1292
    • Vogel, R.M.1    Sankarasubramanian, A.2
  • 49
    • 33847624077 scopus 로고    scopus 로고
    • Treatment of uncertainty using ensemble methods: Comparison of sequential data assimilation and Bayesian model averaging
    • DOI 10.1029/2005WR004838
    • Vrugt, J. A., and B. A. Robinson (2007), Treatment of uncertainty using ensemble methods: Comparison of sequential data assimilation and Bayesian model averaging, Water Resour. Res., 43(1), W01411, 15 pp., doi:10.1029/2005WR004838. (Pubitemid 46364289)
    • (2007) Water Resources Research , vol.43 , Issue.1
    • Vrugt, J.A.1    Robinson, B.A.2
  • 50
    • 1542757127 scopus 로고    scopus 로고
    • A shuffled complex evolution metropolis algorithm for optimization and uncertainty assessment of hydrologic model parameters
    • doi:10.1029/2002WR001642
    • Vrugt, J. A., H. V. Gupta, W. Bouten, and S. Sorooshian (2003), A shuffled complex evolution metropolis algorithm for optimization and uncertainty assessment of hydrologic model parameters, Water Resour. Res., 39(8), 1201, doi:10.1029/2002WR001642.
    • (2003) Water Resour. Res , vol.39 , Issue.8 , pp. 1201
    • Vrugt, J.A.1    Gupta, H.V.2    Bouten, W.3    Sorooshian, S.4
  • 51
    • 14944365603 scopus 로고    scopus 로고
    • Improved treatment of uncertainty in hydrologic modeling: Combining the strengths of global optimization and data assimilation
    • DOI 10.1029/2004WR003059, W01017
    • Vrugt, J. A., C. G. H. Diks, H. V. Gupta, W. Bouten, and J. M. Verstraten (2005), Improved treatment of uncertainty in hydrologic modeling: Combining the strengths of global optimization and data assimilation, Water Resour. Res., 41, W01017, doi:10.1029/2004WR003059. (Pubitemid 40359297)
    • (2005) Water Resources Research , vol.41 , Issue.1 , pp. 1-17
    • Vrugt, J.A.1    Diks, C.G.H.2    Gupta, H.V.3    Bouten, W.4    Verstraten, J.M.5
  • 52
    • 33847633276 scopus 로고    scopus 로고
    • Multi-objective calibration of forecast ensembles using Bayesian model averaging
    • DOI 10.1029/2006GL027126
    • Vrugt, J. A., M. P. Clark, C. G. H. Diks, Q. Duan, and B. A. Robinson (2006), Multi-objective calibration of forecast ensembles using Bayesian model averaging, Geophys. Res. Lett., 33(19), L19817, doi:10.1029/2006GL027126. (Pubitemid 46535104)
    • (2006) Geophysical Research Letters , vol.33 , Issue.19
    • Vrugt, J.A.1    Clark, M.P.2    Diks, C.G.H.3    Duan, Q.4    Robinson, B.A.5
  • 53
    • 41949124639 scopus 로고    scopus 로고
    • Can multi-model combination really enhance the prediction skill of probabilistic ensemble forecasts?
    • DOI 10.1002/qj.210
    • Weigel, A. P., M. A. Liniger, and C. Appenzeller (2008), Can multi-model combination really enhance the prediction skill of probabilistic ensemble forecasts? Q. J. R. Meteorol Soc., 134, 241-260. (Pubitemid 351512725)
    • (2008) Quarterly Journal of the Royal Meteorological Society , vol.134 , Issue.630 , pp. 241-260
    • Weigel, A.P.1    Liniger, M.A.2    Appenzeller, C.3
  • 54
    • 0035340544 scopus 로고    scopus 로고
    • A non-linear combination of the forecasts of rainfall-runoff models by the first-order Takagi-Sugeno fuzzy system
    • DOI 10.1016/S0022-1694(01)00349-3, PII S0022169401003493
    • Xiong, L. H., A. Y. Shamseldin, and K. M. O'Connor (2001), A nonlinear combination of the forecasts of rainfall-runoff models by the first order Takagi-Sugeno fuzzy system, J. Hydrol., 245(1-4), 196-217. (Pubitemid 32386216)
    • (2001) Journal of Hydrology , vol.245 , Issue.1-4 , pp. 196-217
    • Xiong, L.1    Shamseldin, A.Y.2    O'Connor, K.M.3
  • 55
    • 0032579570 scopus 로고    scopus 로고
    • Multi-objective global optimization for hydrologic models
    • Yapo, P. O., H. V. Gupta, and S. Sorooshian (1998), Multi-objective global optimization for hydrologic models, J. Hydrol., 204(1), 83-97.
    • (1998) J. Hydrol , vol.204 , Issue.1 , pp. 83-97
    • Yapo, P.O.1    Gupta, H.V.2    Sorooshian, S.3
  • 56
    • 2942700220 scopus 로고    scopus 로고
    • Maximum likelihood Bayesian averaging of spatial variability models in unsaturated fractured tuff
    • doi:10.1029/2003WR002557
    • Ye, M., S. P. Neuman, and P. D. Meyer (2004), Maximum likelihood Bayesian averaging of spatial variability models in unsaturated fractured tuff, Water Resour. Res., 40, W05113, doi:10.1029/2003WR002557.
    • (2004) Water Resour. Res , vol.40
    • Ye, M.1    Neuman, S.P.2    Meyer, P.D.3
  • 57
    • 51249096540 scopus 로고    scopus 로고
    • Water balance modeling over variable time scales based on the Budyko framework-Model development and testing
    • Zhang, L., N. Potter, K. Hickel, Y. Zhang, and Q. Shao (2008), Water balance modeling over variable time scales based on the Budyko framework-Model development and testing, J. Hydrol., 360, 117-131.
    • (2008) J. Hydrol , vol.360 , pp. 117-131
    • Zhang, L.1    Potter, N.2    Hickel, K.3    Zhang, Y.4    Shao, Q.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.