메뉴 건너뛰기




Volumn 48, Issue 12, 2012, Pages

Evolution of ensemble data assimilation for uncertainty quantification using the particle filter-Markov chain Monte Carlo method

Author keywords

[No Author keywords available]

Indexed keywords

COMPUTATIONAL DEMANDS; ENSEMBLE DATA ASSIMILATION; HYDROLOGIC MODELS; HYDROLOGIC PREDICTION; MARKOV CHAIN MONTE CARLO METHOD; PARTICLE FILTER; POSTERIOR DISTRIBUTIONS; PROBABILISTIC PREDICTION; SAMPLE IMPOVERISHMENT; SURFACE MODELS; SYNTHETIC STUDY; UNCERTAINTY QUANTIFICATIONS;

EID: 84871364784     PISSN: 00431397     EISSN: 19447973     Source Type: Journal    
DOI: 10.1029/2012WR012144     Document Type: Article
Times cited : (202)

References (45)
  • 2
    • 0034508765 scopus 로고    scopus 로고
    • Toward improved calibration of hydrologic models: Combining the strengths of manual and automatic methods
    • DOI 10.1029/2000WR900207
    • Boyle, D. P., H. V. Gupta, and S. Sorooshian (2000), Toward improved calibration of hydrologic models: Combining the strengths of manual and automatic methods, Water Resour. Res., 36(12), 3663-3674, doi:10.1029/ 2000WR900207. (Pubitemid 32039916)
    • (2000) Water Resources Research , vol.36 , Issue.12 , pp. 3663-3674
    • Boyle, D.P.1    Gupta, H.V.2    Sorooshian, S.3
  • 3
    • 77954427278 scopus 로고    scopus 로고
    • How Bayesian data assimilation can be used to estimate the mathematical structure of a model
    • Bulygina, N., and H. Gupta (2010), How Bayesian data assimilation can be used to estimate the mathematical structure of a model, Stoch. Environ. Res. Risk Assess., 24(6), 925-937.
    • (2010) Stoch. Environ. Res. Risk Assess. , vol.24 , Issue.6 , pp. 925-937
    • Bulygina, N.1    Gupta, H.2
  • 4
    • 79451473599 scopus 로고    scopus 로고
    • Radiance data assimilation for operational snow and streamflow forecasting
    • DeChant, C., and H. Moradkhani (2011a), Radiance data assimilation for operational snow and streamflow forecasting, Adv. Water Resour., 34(3), 351-364.
    • (2011) Adv. Water Resour , vol.34 , Issue.3 , pp. 351-364
    • Dechant, C.1    Moradkhani, H.2
  • 5
    • 81355139449 scopus 로고    scopus 로고
    • Improving the characterization of initial condition for ensemble streamflow prediction using data assimilation
    • DeChant, C. M., and H. Moradkhani (2011b), Improving the characterization of initial condition for ensemble streamflow prediction using data assimilation, Hydrol. Earth Syst. Sci., 15(11), 3399-3410.
    • (2011) Hydrol. Earth Syst. Sci , vol.15 , Issue.11 , pp. 3399-3410
    • Dechant, C.M.1    Moradkhani, H.2
  • 6
    • 84858807931 scopus 로고    scopus 로고
    • Examining the effectiveness and robustness of sequential data assimilation methods for quantification of uncertainty in hydrologic forecasting
    • doi:10.1029/2011WR011011
    • DeChant, C., and H. Moradkhani (2012), Examining the effectiveness and robustness of sequential data assimilation methods for quantification of uncertainty in hydrologic forecasting, Water Resour. Res., 48, W04518, doi:10.1029/2011WR011011.
    • (2012) Water Resour. Res , vol.48
    • Dechant, C.1    Moradkhani, H.2
  • 9
    • 55249106218 scopus 로고    scopus 로고
    • Real-time ground-water flow modeling with the ensemble Kalman filter: Joint estimation of states and parameters and the filter inbreeding problem
    • doi:10.1029/2007WR006505
    • Hendricks Franssen, H. J., and W. Kinzelbach (2008), Real-time ground-water flow modeling with the ensemble Kalman filter: Joint estimation of states and parameters and the filter inbreeding problem, Water Resour. Res., 44(9), W09408, doi:10.1029/2007WR006505.
    • (2008) Water Resour. Res , vol.44 , Issue.9
    • Hendricks Franssen, H.J.1    Kinzelbach, W.2
  • 11
    • 79961229131 scopus 로고    scopus 로고
    • Bayesian calibration and uncertainty analysis of hydrological models: A comparison of adaptive Metropolis and sequential Monte Carlo samplers
    • doi:10.1029/2010WR010217
    • Jeremiah, E., S. Sisson, L. Marshall, R. Mehrotra, and A. Sharma (2011), Bayesian calibration and uncertainty analysis of hydrological models: A comparison of adaptive Metropolis and sequential Monte Carlo samplers, Water Resour. Res., 47(7), W07547, doi:10.1029/2010WR010217.
    • (2011) Water Resour. Res. , vol.47 , Issue.7
    • Jeremiah, E.1    Sisson, S.2    Marshall, L.3    Mehrotra, R.4    Sharma, A.5
  • 12
    • 79952129627 scopus 로고    scopus 로고
    • An overview of Sequential Monte Carlo methods for parameter estimation in general state-space models
    • Kantas, N., A. Doucet, S. S. Singh, and J. M. MacIejowski (2009), An overview of Sequential Monte Carlo methods for parameter estimation in general state-space models, IFAC Proc. Volumes (IFAC-PapersOnline), 15, 774-785.
    • (2009) IFAC Proc. Volumes (IFAC-PapersOnline) , vol.15 , pp. 774-785
    • Kantas, N.1    Doucet, A.2    Singh, S.S.3    MacIejowski, J.M.4
  • 13
    • 33646495330 scopus 로고    scopus 로고
    • Bayesian analysis of input uncertainty in hydrological modeling 1. Theory
    • doi:10.1029/2005WR004368
    • Kavetski, D., G. Kuczera, and S. W. Franks (2006), Bayesian analysis of input uncertainty in hydrological modeling: 1. Theory, Water Resour. Res., 42(3), W03407, doi:10.1029/2005WR004368.
    • (2006) Water Resour. Res. , vol.42 , Issue.3
    • Kavetski, D.1    Kuczera, G.2    Franks, S.W.3
  • 14
    • 0032214428 scopus 로고    scopus 로고
    • Monte Carlo assessment of parameter uncertainty in conceptual catchment models: The Metropolis algorithm
    • DOI 10.1016/S0022-1694(98)00198-X, PII S002216949800198X
    • Kuczera, G., and E. Parent (1998), Monte Carlo assessment of parameter uncertainty in conceptual catchment models: The Metropolis algorithm, J. Hydrol., 211(1-4), 69-85. (Pubitemid 29014557)
    • (1998) Journal of Hydrology , vol.211 , Issue.1-4 , pp. 69-85
    • Kuczera, G.1    Parent, E.2
  • 15
    • 78751618597 scopus 로고    scopus 로고
    • Snow water equivalent prediction using Bayesian data assimilation methods
    • Leisenring, M., and H. Moradkhani (2011), Snow water equivalent prediction using Bayesian data assimilation methods, Stoch. Environ. Res. Risk Assess., 25(2), 253-270.
    • (2011) Stoch. Environ. Res. Risk Assess. , vol.25 , Issue.2 , pp. 253-270
    • Leisenring, M.1    Moradkhani, H.2
  • 16
    • 84867103057 scopus 로고    scopus 로고
    • Analyzing the uncertainty of suspended sediment load prediction using sequential Monte Carlo methods
    • Leisenring, M., and H. Moradkhani (2012), Analyzing the uncertainty of suspended sediment load prediction using sequential Monte Carlo methods, J. Hydrol., 468/469, 268-282.
    • (2012) J. Hydrol , vol.468-469 , pp. 268-282
    • Leisenring, M.1    Moradkhani, H.2
  • 17
    • 84862908327 scopus 로고    scopus 로고
    • Improving estimated soil moisture fields through assimilation of AMSR-E soil moisture retrievals with an ensemble Kalman filter and a mass conservation constraint
    • Li, B., D. Toll, X. Zhan, and B. Cosgrove (2012), Improving estimated soil moisture fields through assimilation of AMSR-E soil moisture retrievals with an ensemble Kalman filter and a mass conservation constraint, Hydrol. Earth Syst. Sci., 16(1), 105-119.
    • (2012) Hydrol. Earth Syst. Sci. , vol.16 , Issue.1 , pp. 105-119
    • Li, B.1    Toll, D.2    Zhan, X.3    Cosgrove, B.4
  • 18
    • 0032359151 scopus 로고    scopus 로고
    • Sequential Monte Carlo methods for dynamic systems
    • Liu, J. S., and R. Chen (1998), Sequential Monte Carlo methods for dynamic systems, J. Am. Stat. Assoc., 93(443), 1032-1044.
    • (1998) J. Am. Stat. Assoc , vol.93 , Issue.443 , pp. 1032-1044
    • Liu, J.S.1    Chen, R.2
  • 19
    • 0000978881 scopus 로고    scopus 로고
    • A theoretical framework for sequential importance sampling and resampling
    • edited by A Doucet et al Springer, New York
    • Liu, J. S., R. Chen, and T. Logvinenko (2001), A theoretical framework for sequential importance sampling and resampling, in Sequential Monte Carlo Methods in Practice, edited by A. Doucet et al., pp. 225-246, Springer, New York.
    • (2001) Sequential Monte Carlo Methods in Practice , pp. 225-246
    • Liu, J.S.1    Chen, R.2    Logvinenko, T.3
  • 20
    • 84871397512 scopus 로고    scopus 로고
    • Toward advancing data assimilation in operational hydro-logic forecasting and water resources management: Current status, challenges, and emerging opportunities
    • Liu, Y., et al. (2012), Toward advancing data assimilation in operational hydro-logic forecasting and water resources management: Current status, challenges, and emerging opportunities, Hydrol. Earth Syst. Sci., 16, 3863-3887.
    • (2012) Hydrol. Earth Syst. Sci , vol.16 , pp. 3863-3887
    • Liu, Y.1
  • 21
    • 84890312326 scopus 로고    scopus 로고
    • Towards improved post-processing of hydrologic forecast ensembles
    • doi:10.1002/hyp.9562 in press
    • Madadgar, S., H. Moradkhani, and D. Garen (2012), Towards improved post-processing of hydrologic forecast ensembles, Hydrol. Process., doi:10.1002/hyp.9562, in press.
    • (2012) Hydrol. Process
    • Madadgar, S.1    Moradkhani, H.2    Garen, D.3
  • 22
    • 1642295818 scopus 로고    scopus 로고
    • A comparative study of Markov chain Monte Carlo methods for conceptual rainfall-runoff modeling
    • doi:10.1029/2003WR002378
    • Marshall, L., D. Nott, and A. Sharma (2004), A comparative study of Markov chain Monte Carlo methods for conceptual rainfall-runoff modeling, Water Resour. Res., 40(2), W02501, doi:10.1029/2003WR002378.
    • (2004) Water Resour. Res , vol.40 , Issue.2
    • Marshall, L.1    Nott, D.2    Sharma, A.3
  • 24
    • 79951977683 scopus 로고    scopus 로고
    • Hydraulic parameter estimation by remotely-sensed top soil moisture observations with the particle filter
    • Montzka, C., H. Moradkhani, L. Weihermuller, H. J. H. Franssen, M. Canty, and H. Vereecken (2011), Hydraulic parameter estimation by remotely-sensed top soil moisture observations with the particle filter, J. Hydrol., 399(3-4), 410-421.
    • (2011) J. Hydrol. , vol.399 , Issue.3-4 , pp. 410-421
    • Montzka, C.1    Moradkhani, H.2    Weihermuller, L.3    Franssen, H.J.H.4    Canty, M.5    Vereecken, H.6
  • 25
    • 44649147780 scopus 로고    scopus 로고
    • Hydrologic remote sensing and land surface data assimilation
    • Moradkhani, H. (2008), Hydrologic remote sensing and land surface data assimilation, Sensors, 8(5), 2986-3004.
    • (2008) Sensors , vol.8 , Issue.5 , pp. 2986-3004
    • Moradkhani, H.1
  • 26
    • 78751628207 scopus 로고    scopus 로고
    • General review of rainfall-runoff modeling: Model calibration, data assimilation, and uncertainty analysis
    • Moradkhani, H., and S. Sorooshian (2008), General review of rainfall-runoff modeling: Model calibration, data assimilation, and uncertainty analysis, Hydrol. Model. Water Cycle, 63, 1-23.
    • (2008) Hydrol. Model. Water Cycle , vol.63 , pp. 1-23
    • Moradkhani, H.1    Sorooshian, S.2
  • 27
    • 11944268965 scopus 로고    scopus 로고
    • Dual state-parameter estimation of hydrological models using ensemble Kalman filter
    • DOI 10.1016/j.advwatres.2004.09.002, PII S0309170804001605
    • Moradkhani, H., S. Sorooshian, H. V. Gupta, and P. R. Houser (2005a), Dual state-parameter estimation of hydrological models using ensemble Kalman filter, Adv. Water Resour., 28(2), 135-147. (Pubitemid 40102390)
    • (2005) Advances in Water Resources , vol.28 , Issue.2 , pp. 135-147
    • Moradkhani, H.1    Sorooshian, S.2    Gupta, H.V.3    Houser, P.R.4
  • 28
    • 20844449766 scopus 로고    scopus 로고
    • Uncertainty assessment of hydrologic model states and parameters: Sequential data assimilation using the particle filter
    • DOI 10.1029/2004WR003604, W05012
    • Moradkhani, H., K. L. Hsu, H. Gupta, and S. Sorooshian (2005b), Uncertainty assessment of hydrologic model states and parameters: Sequential data assimilation using the particle filter, Water Resour. Res., 41(5), W05012, doi:10.1029/2004WR003604. (Pubitemid 40856462)
    • (2005) Water Resources Research , vol.41 , Issue.5 , pp. 1-17
    • Moradkhani, H.1    Hsu, K.-L.2    Gupta, H.3    Sorooshian, S.4
  • 29
    • 33750609870 scopus 로고    scopus 로고
    • Investigating the impact of remotely sensed precipitation and hydrologic model uncertainties on the ensemble streamflow forecasting
    • DOI 10.1029/2006GL026855
    • Moradkhani, H., K. Hsu, Y. Hong, and S. Sorooshian (2006), Investigating the impact of remotely sensed precipitation and hydrologic model uncertainties on the ensemble streamflow forecasting, Geophys. Res. Lett., 33(12), L12401, doi:10.1029/2006GL026855. (Pubitemid 44687708)
    • (2006) Geophysical Research Letters , vol.33 , Issue.12
    • Moradkhani, H.1    Hsu, K.2    Hong, Y.3    Sorooshian, S.4
  • 31
    • 84861210595 scopus 로고    scopus 로고
    • Ensemble stream-flow prediction: Climate signal weighting vs. climate forecast system reanalysis
    • Najafi, M. R., H. Moradkhani, and T. Piechota, (2012), Ensemble stream-flow prediction: Climate signal weighting vs. climate forecast system reanalysis, J. Hydrol., 442-443, 105-116.
    • (2012) J. Hydrol , vol.442-443 , pp. 105-116
    • Najafi, M.R.1    Moradkhani, H.2    Piechota, T.3
  • 32
    • 79961238018 scopus 로고    scopus 로고
    • Simultaneous estimation of land surface scheme states and parameters using the ensemble Kalman filter: Identical twin experiments
    • Nie, S., J. Zhu, and Y. Luo (2011), Simultaneous estimation of land surface scheme states and parameters using the ensemble Kalman filter: Identical twin experiments, Hydrol. Earth Syst. Sci., 15(8), 2437-2457.
    • (2011) Hydrol. Earth Syst. Sci. , vol.15 , Issue.8 , pp. 2437-2457
    • Nie, S.1    Zhu, J.2    Luo, Y.3
  • 33
    • 84858823339 scopus 로고    scopus 로고
    • Towards reduction of model uncertainty: Integration of Bayesian model averaging and data assimilation
    • doi:10.1029/2011WR011116
    • Parrish, M., H. Moradkhani, and C. M. DeChant (2012), Towards reduction of model uncertainty: Integration of Bayesian model averaging and data assimilation, Water Resour. Res., 48, W03519, doi:10.1029/2011WR011116.
    • (2012) Water Resour. Res , vol.48
    • Parrish, M.1    Moradkhani, H.2    Dechant, C.M.3
  • 34
    • 84856961948 scopus 로고    scopus 로고
    • The importance of parameter resampling for soil moisture data assimilation into hydrologic models using the particle filter
    • Plaza, D. A., R. De Keyser, G. J. M. De Lannoy, L. Giustarini, P. Matgen, and V. R. N. Pauwels (2012), The importance of parameter resampling for soil moisture data assimilation into hydrologic models using the particle filter, Hydrol. Earth Syst. Sci., 16(2), 375-390.
    • (2012) Hydrol. Earth Syst. Sci. , vol.16 , Issue.2 , pp. 375-390
    • Plaza, D.A.1    De Keyser, R.2    De Lannoy, G.J.M.3    Giustarini, L.4    Matgen, P.5    Pauwels, V.R.N.6
  • 35
    • 81755176146 scopus 로고    scopus 로고
    • Toward a reliable decomposition of predictive uncertainty in hydrological modeling: Characterizing rainfall errors using conditional simulation
    • doi:10.1029/2011WR010643
    • Renard, B., D. Kavetski, E. Leblois, M. Thyer, G. Kuczera, and S. W. Franks (2011), Toward a reliable decomposition of predictive uncertainty in hydrological modeling: Characterizing rainfall errors using conditional simulation, Water Resour. Res., 47(11), W11516, doi:10.1029/2011WR010643.
    • (2011) Water Resour. Res. , vol.47 , Issue.11
    • Renard, B.1    Kavetski, D.2    Leblois, E.3    Thyer, M.4    Kuczera, G.5    Franks, S.W.6
  • 36
    • 77949711985 scopus 로고    scopus 로고
    • Coupled hydrogeophys-ical parameter estimation using a sequential Bayesian approach
    • Rings, J., J. A. Huisman, and H. Vereecken (2010), Coupled hydrogeophys-ical parameter estimation using a sequential Bayesian approach, Hydrol. Earth Syst. Sci., 14(3), 545-556.
    • (2010) Hydrol. Earth Syst. Sci. , vol.14 , Issue.3 , pp. 545-556
    • Rings, J.1    Huisman, J.A.2    Vereecken, H.3
  • 37
    • 0013037129 scopus 로고    scopus 로고
    • Optimal scaling for various metropolis-hastings algorithms
    • DOI 10.1214/ss/1015346320
    • Roberts, G. O., and J. S. Rosenthal (2001), Optimal scaling for various metropolis-Hastings algorithms, Stat. Sci., 16(4), 351-367. (Pubitemid 33636356)
    • (2001) Statistical Science , vol.16 , Issue.4 , pp. 351-367
    • Roberts, G.O.1    Rosenthal, J.S.2
  • 38
    • 70249132985 scopus 로고    scopus 로고
    • Assessing parameter, precipitation, and predictive uncertainty in a distributed hydrological model using sequential data assimilation with the particle filter
    • Salamon, P., and L. Feyen (2009), Assessing parameter, precipitation, and predictive uncertainty in a distributed hydrological model using sequential data assimilation with the particle filter, J. Hydrol., 376(3-4), 428-442.
    • (2009) J. Hydrol , vol.376 , Issue.3-4 , pp. 428-442
    • Salamon, P.1    Feyen, L.2
  • 39
    • 68949104874 scopus 로고    scopus 로고
    • Bayesian methods in hydrologic modeling: A study of recent advancements in Markov chain Monte Carlo techniques
    • doi:10.1029/2007 WR006705
    • Smith, T. J., and L. A. Marshall (2008), Bayesian methods in hydrologic modeling: A study of recent advancements in Markov chain Monte Carlo techniques, Water Resour. Res., 44(12), W00B05, doi:10.1029/2007 WR006705.
    • (2008) Water Resour. Res , vol.44 , Issue.12
    • Smith, T.J.1    Marshall, L.A.2
  • 40
    • 64149083162 scopus 로고    scopus 로고
    • Obstacles to high-dimensional particle filtering
    • Snyder, C., T. Bengtsson, P. Bickel, and J. Anderson (2008), Obstacles to high-dimensional particle filtering, Mon. Weather Rev., 136(12), 4629-4640.
    • (2008) Mon. Weather Rev , vol.136 , Issue.12 , pp. 4629-4640
    • Snyder, C.1    Bengtsson, T.2    Bickel, P.3    Anderson, J.4
  • 41
    • 74949130817 scopus 로고    scopus 로고
    • Particle filtering in geophysical systems
    • van Leeuwen, P. J. (2009), Particle filtering in geophysical systems, Mon. Weather Rev., 137(12), 4089-4114.
    • (2009) Mon. Weather Rev , vol.137 , Issue.12 , pp. 4089-4114
    • Van Leeuwen, P.J.1
  • 42
    • 65349141143 scopus 로고    scopus 로고
    • Accelerating Markov chain Monte Carlo simulation by differential evolution with self-adaptive randomized subspace sampling
    • Vrugt, J. A., B. A. Robinson, J. M. Hyman, and D. Higdon (2009), Accelerating Markov chain Monte Carlo simulation by differential evolution with self-adaptive randomized subspace sampling, Math. Model. Anal., 10(3), 273-290.
    • (2009) Math. Model. Anal , vol.10 , Issue.3 , pp. 273-290
    • Vrugt, J.A.1    Robinson, B.A.2    Hyman, J.M.3    Higdon, D.4
  • 43
    • 84872946627 scopus 로고    scopus 로고
    • Hydro-logic data assimilation using particle Markov chain Monte Carlo simulation: Theory, concepts and applications
    • Press
    • Vrugt, J. A., C. J. F. ter Braak, C. G. H. Diks, and G. Schoups (2012), Hydro-logic data assimilation using particle Markov chain Monte Carlo simulation: Theory, concepts and applications, Adv. Water Resour., in press.
    • (2012) Adv. Water Resour
    • Vrugt, J.A.1    Ter Braak, C.J.F.2    Diks, C.G.H.3    Schoups, G.4
  • 44
    • 33750368306 scopus 로고    scopus 로고
    • Particle filtering and ensemble Kalman filtering for state updating with hydrological conceptual rainfall-runoff models
    • DOI 10.1029/2005WR004093
    • Weerts, A. H., and G. Y. H. El Serafy (2006), Particle filtering and ensemble Kalman filtering for state updating with hydrological conceptual rainfall-runoff models, Water Resour. Res., 42(9), W09403, doi:10.1029/ 2005WR004093. (Pubitemid 44619764)
    • (2006) Water Resources Research , vol.42 , Issue.9
    • Weerts, A.H.1    El Serafy, G.Y.H.2
  • 45
    • 33747775838 scopus 로고    scopus 로고
    • Assessing the performance of the ensemble Kalman filter for land surface data assimilation
    • DOI 10.1175/MWR3153.1
    • Zhou, Y., D. McLaughlin, and D. Entekhabi (2006), Assessing the performance of the ensemble Kalman filter for land surface data assimilation, Mon. Weather Rev., 134(8), 2128-2142. (Pubitemid 44275528)
    • (2006) Monthly Weather Review , vol.134 , Issue.8 , pp. 2128-2142
    • Zhou, Y.1    McLaughlin, D.2    Entekhabi, D.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.