메뉴 건너뛰기




Volumn 47, Issue 11, 2011, Pages

Toward a reliable decomposition of predictive uncertainty in hydrological modeling: Characterizing rainfall errors using conditional simulation

Author keywords

[No Author keywords available]

Indexed keywords

BAYESIAN INFERENCE; BAYESIAN PARADIGM; CONDITIONAL SIMULATIONS; DERIVED DATA; ENVIRONMENTAL DATA; ENVIRONMENTAL MODELING; GEOSTATISTICAL; HYDROLOGICAL MODELING; ILL-POSEDNESS; INSTRUMENTAL DATA; LEAST SQUARE; PREDICTIVE UNCERTAINTY; PROBABILITY MODELS; RAIN GAUGE DATA; RAINFALL-RUNOFF MODELS; RUNOFF DATA; RUNOFF PREDICTION; SIMULTANEOUS ESTIMATION; SOURCES OF UNCERTAINTY; STRATEGIC GUIDANCE; STRUCTURAL ERRORS;

EID: 81755176146     PISSN: 00431397     EISSN: None     Source Type: Journal    
DOI: 10.1029/2011WR010643     Document Type: Article
Times cited : (188)

References (82)
  • 1
    • 28244492298 scopus 로고    scopus 로고
    • On the concept of model structural error
    • Beven, K. J. (2005), On the concept of model structural error, Water Sci. Technol., 52(6), 167-175.
    • (2005) Water Sci. Technol. , vol.52 , Issue.6 , pp. 167-175
    • Beven, K.J.1
  • 2
    • 33644526990 scopus 로고    scopus 로고
    • A manifesto for the equifinality thesis
    • Beven, K. J. (2006), A manifesto for the equifinality thesis, J. Hydrol., 320, 18-36.
    • (2006) J. Hydrol. , vol.320 , pp. 18-36
    • Beven, K.J.1
  • 3
    • 50449091346 scopus 로고    scopus 로고
    • On doing better hydrological science
    • doi:10.1002/hyp.7108
    • Beven, K. J. (2008), On doing better hydrological science, Hydrol. Processes, 22(17), 3549-3553, doi:10.1002/hyp.7108.
    • (2008) Hydrol. Processes , vol.22 , Issue.17 , pp. 3549-3553
    • Beven, K.J.1
  • 4
    • 72149123038 scopus 로고    scopus 로고
    • Estimating the uncertain mathematical structure of a water balance model via Bayesian data assimilation
    • doi:10.1029/2007wr006749
    • Bulygina, N., and H. Gupta (2009), Estimating the uncertain mathematical structure of a water balance model via Bayesian data assimilation, Water Resour. Res., 45, W00B13, doi:10.1029/2007wr006749.
    • (2009) Water Resour. Res. , vol.45
    • Bulygina, N.1    Gupta, H.2
  • 5
    • 33645549317 scopus 로고    scopus 로고
    • Probabilistic quantitative precipitation estimation in complex terrain
    • Clark, M. P., and A. G. Slater (2006), Probabilistic quantitative precipitation estimation in complex terrain, J. Hydrometeorol., 7(1), 3-22.
    • (2006) J. Hydrometeorol. , vol.7 , Issue.1 , pp. 3-22
    • Clark, M.P.1    Slater, A.G.2
  • 6
    • 51349141022 scopus 로고    scopus 로고
    • Framework for Understanding Structural Errors (FUSE): A modular framework to diagnose differences between hydrological models
    • doi:10.1029/2007WR006735
    • Clark, M. P., A. G. Slater, D. E. Rupp, R. A. Woods, J. A. Vrugt, H. V. Gupta, T. Wagener, and L. E. Hay (2008), Framework for Understanding Structural Errors (FUSE): A modular framework to diagnose differences between hydrological models, Water Resour. Res., 44, W00B02, doi:10.1029/2007WR006735.
    • (2008) Water Resour. Res. , vol.44
    • Clark, M.P.1    Slater, A.G.2    Rupp, D.E.3    Woods, R.A.4    Vrugt, J.A.5    Gupta, H.V.6    Wagener, T.7    Hay, L.E.8
  • 7
    • 0030539336 scopus 로고    scopus 로고
    • Markov chain Monte Carlo convergence diagnostics: A comparative review
    • Cowles, M. K., and B. P. Carlin (1996), Markov chain Monte Carlo convergence diagnostics: A comparative review, J. Am. Stat. Assoc., 91(434), 883-904.
    • (1996) J. Am. Stat. Assoc. , vol.91 , Issue.434 , pp. 883-904
    • Cowles, M.K.1    Carlin, B.P.2
  • 8
    • 65349116559 scopus 로고    scopus 로고
    • Accounting for uncertainty in ecological analysis: The strengths and limitations of hierarchical statistical modeling
    • Cressie, N., C. A. Calder, J. S. Clark, J. M. V. Hoef, and C. K. Wikle (2009), Accounting for uncertainty in ecological analysis: The strengths and limitations of hierarchical statistical modeling, Ecol. Appl., 19(3), 553-570.
    • (2009) Ecol. Appl. , vol.19 , Issue.3 , pp. 553-570
    • Cressie, N.1    Calder, C.A.2    Clark, J.S.3    Hoef, J.M.V.4    Wikle, C.K.5
  • 9
    • 75749139354 scopus 로고    scopus 로고
    • Uncertainty in river discharge observations: A quantitative analysis
    • Di Baldassarre, G., and A. Montanari (2009), Uncertainty in river discharge observations: A quantitative analysis, Hydrol. Earth Syst. Sci., 13(6), 913-921z.
    • (2009) Hydrol. Earth Syst. Sci. , vol.13 , Issue.6
    • Di Baldassarre, G.1    Montanari, A.2
  • 10
    • 77952859980 scopus 로고    scopus 로고
    • A short exploration of structural noise
    • doi:10.1029/2009WR008377
    • Doherty, J., and D. Welter (2010), A short exploration of structural noise, Water Resour. Res., 46, W05525, doi:10.1029/2009WR008377.
    • (2010) Water Resour. Res. , vol.46
    • Doherty, J.1    Welter, D.2
  • 11
    • 73149107988 scopus 로고    scopus 로고
    • A dynamic rating curve approach to indirect discharge measurement
    • Dottori, F., M. L. V. Martina, and E. Todini (2009), A dynamic rating curve approach to indirect discharge measurement, Hydrol. Earth Syst. Sci. Discuss., 6(1), 859-896.
    • (2009) Hydrol. Earth Syst. Sci. Discuss. , vol.6 , Issue.1 , pp. 859-896
    • Dottori, F.1    Martina, M.L.V.2    Todini, E.3
  • 12
    • 33847274843 scopus 로고    scopus 로고
    • Multi-model ensemble hydrologic prediction using Bayesian model averaging
    • DOI 10.1016/j.advwatres.2006.11.014, PII S030917080600220X
    • Duan, Q., N. K. Ajami, X. Gao, and S. Sorooshian (2007), Multi-model ensemble hydrologic prediction using Bayesian model averaging, Adv. Water Resour., 30(5), 1371-1386. (Pubitemid 46323445)
    • (2007) Advances in Water Resources , vol.30 , Issue.5 , pp. 1371-1386
    • Duan, Q.1    Ajami, N.K.2    Gao, X.3    Sorooshian, S.4
  • 13
    • 0028193070 scopus 로고
    • Sequential data assimilation with a nonlinear quasigeostrophic model using Monte Carlo methods to forecast error statistics
    • doi:10.1029/94JC00572
    • Evensen, G. (1994), Sequential data assimilation with a nonlinear quasigeostrophic model using Monte Carlo methods to forecast error statistics, J. Geophys. Res., 99(C5), 10,143-10,162, doi:10.1029/94JC00572.
    • (1994) J. Geophys. Res. , vol.99 , Issue.C5 , pp. 10143-10162
    • Evensen, G.1
  • 16
    • 56949088109 scopus 로고    scopus 로고
    • Reified Bayesian modelling and inference for physical systems
    • Goldstein, M., and J. Rougier (2009), Reified Bayesian modelling and inference for physical systems, J. Stat. Plann. Inference, 139(3), 1221-1239.
    • (2009) J. Stat. Plann. Inference , vol.139 , Issue.3 , pp. 1221-1239
    • Goldstein, M.1    Rougier, J.2
  • 17
    • 0034696138 scopus 로고    scopus 로고
    • Geostatistical approaches for incorporating elevation into the spatial interpolation of rainfall
    • DOI 10.1016/S0022-1694(00)00144-X, PII S002216940000144X
    • Goovaerts, P. (2000), Geostatistical approaches for incorporating elevation into the spatial interpolation of rainfall, J. Hydrol., 228(1-2), 113-129. (Pubitemid 30156971)
    • (2000) Journal of Hydrology , vol.228 , Issue.1-2 , pp. 113-129
    • Goovaerts, P.1
  • 18
    • 72149095854 scopus 로고    scopus 로고
    • Generic error model for calibration and uncertainty estimation of hydrological models
    • doi:10.1029/2007WR006691z
    • Gotzinger, J., and A. Bardossy (2008), Generic error model for calibration and uncertainty estimation of hydrological models, Water Resour. Res., 44, W00B07, doi:10.1029/2007WR006691z.
    • (2008) Water Resour. Res. , vol.44
    • Gotzinger, J.1    Bardossy, A.2
  • 19
    • 34047128676 scopus 로고    scopus 로고
    • On not undermining the science: Coherence, validation and expertise. Discussion of Invited Commentary by Keith Beven Hydrological Processes, 20, 3141-3146 (2006)
    • DOI 10.1002/hyp.6639
    • Hall, J., E. O'Connell, and J. Ewen (2007), On not undermining the science: Coherence, validation and expertise. Discussion of invited commentary by Keith Beven Hydrological Processes, 20, 3141-3146 (2006), Hydrol. Processes, 21(7), 985-988. (Pubitemid 46510589)
    • (2007) Hydrological Processes , vol.21 , Issue.7 , pp. 985-988
    • Hall, J.1    O'Connell, E.2    Ewen, J.3
  • 20
    • 0028468833 scopus 로고
    • The analysis of uncertainties in the stage-discharge relation
    • Herschy, R. (1994), The analysis of uncertainties in the stage discharge relation, Flow Meas. Instrum., 5(3), 188-190. (Pubitemid 281631)
    • (1994) Flow Measurement & Instrumentation , vol.5 , Issue.3 , pp. 188-190
    • Herschy, R.1
  • 21
    • 41149132113 scopus 로고    scopus 로고
    • Calibration of hydrological model GR2M using Bayesian uncertainty analysis
    • DOI 10.1029/2007WR005949
    • Huard, D., and A. Mailhot (2008), Calibration of hydrological model GR2M using Bayesian uncertainty analysis, Water Resour. Res., 44, W02424, doi:10.1029/2007WR005949. (Pubitemid 351442502)
    • (2008) Water Resources Research , vol.44 , Issue.2
    • Huard, D.1    Mailhot, A.2
  • 22
    • 34249082149 scopus 로고    scopus 로고
    • Development of a possibilistic method for the evaluation of predictive uncertainty in rainfall-runoff modeling
    • DOI 10.1029/2006WR005072
    • Jacquin, A., and A. Y. Shamseldin (2007), Development of a possibilistic method for the evaluation of predictive uncertainty in rainfall-runoff modeling, Water Resour. Res., 43, W04425, doi:10.1029/2006WR 005072. (Pubitemid 46799531)
    • (2007) Water Resources Research , vol.43 , Issue.4
    • Jacquin, A.P.1    Shamseldin, A.Y.2
  • 24
    • 77958463981 scopus 로고    scopus 로고
    • Ancient numerical daemons of conceptual hydrological modeling: 2. Impact of time stepping schemes on model analysis and prediction
    • doi:10.1029/2009WR008896
    • Kavetski, D., and M. P. Clark (2010), Ancient numerical daemons of conceptual hydrological modeling: 2. Impact of time stepping schemes on model analysis and prediction, Water Resour. Res., 46, W10511, doi:10.1029/ 2009WR008896.
    • (2010) Water Resour. Res. , vol.46
    • Kavetski, D.1    Clark, M.P.2
  • 25
    • 14944381637 scopus 로고    scopus 로고
    • Confronting input uncertainty in environmental modelling in calibration of watershed models
    • edited by Q. Y. Duan et al., AGU, Washington, D. C
    • Kavetski, D., S. Franks, and G. Kuczera (2002), Confronting input uncertainty in environmental modelling in calibration of watershed models, in Calibration of Watershed Models, Water Sci. Appl. Ser., vol. 6, edited by Q. Y. Duan et al., pp. 49-68, AGU, Washington, D. C.
    • (2002) Calibration of Watershed Models, Water Sci. Appl. Ser. , vol.6 , pp. 49-68
    • Kavetski, D.1    Franks, S.2    Kuczera, G.3
  • 26
    • 33644550945 scopus 로고    scopus 로고
    • Calibration of conceptual hydrological models revisited: 1. Overcoming numerical artefacts
    • Kavetski, D., G. Kuczera, and S. W. Franks (2006a), Calibration of conceptual hydrological models revisited: 1. Overcoming numerical artefacts, J. Hydrol., 320(1-2), 173-186.
    • (2006) J. Hydrol. , vol.320 , Issue.1-2 , pp. 173-186
    • Kavetski, D.1    Kuczera, G.2    Franks, S.W.3
  • 27
    • 33646495330 scopus 로고    scopus 로고
    • Bayesian analysis of input uncertainty in hydrological modeling: 1. Theory
    • doi:10.1029/2005WR004368
    • Kavetski, D., G. Kuczera, and S. W. Franks (2006b), Bayesian analysis of input uncertainty in hydrological modeling: 1. Theory, Water Resour. Res., 42, W03407, doi:10.1029/2005WR004368.
    • (2006) Water Resour. Res. , vol.42
    • Kavetski, D.1    Kuczera, G.2    Franks, S.W.3
  • 28
    • 33646510313 scopus 로고    scopus 로고
    • Bayesian analysis of input uncertainty in hydrological modeling: 2. Application
    • doi:10.1029/2005WR004376
    • Kavetski, D., G. Kuczera, and S. W. Franks (2006c), Bayesian analysis of input uncertainty in hydrological modeling: 2. Application, Water Resour. Res., 42, W03408, doi:10.1029/2005WR004376.
    • (2006) Water Resour. Res. , vol.42
    • Kavetski, D.1    Kuczera, G.2    Franks, S.W.3
  • 29
    • 33644521269 scopus 로고    scopus 로고
    • Calibration of conceptual hydrological models revisited: 2. Improving optimisation and analysis
    • Kavetski, D., G. Kuczera, and S. W. Franks (2006d), Calibration of conceptual hydrological models revisited: 2. Improving optimisation and analysis, J. Hydrol., 320(1-2), 187-201z.
    • (2006) J. Hydrol. , vol.320 , Issue.1-2
    • Kavetski, D.1    Kuczera, G.2    Franks, S.W.3
  • 30
    • 0035648165 scopus 로고    scopus 로고
    • Bayesian calibration of computer models
    • Kennedy, M. C., and A. O'Hagan (2001), Bayesian calibration of computer models, J. R. Stat. Soc., Ser. B, 63(3), 425-464.
    • (2001) J. R. Stat. Soc., Ser. B , vol.63 , Issue.3 , pp. 425-464
    • Kennedy, M.C.1    O'Hagan, A.2
  • 31
    • 77957582207 scopus 로고    scopus 로고
    • Toward an error model for radar quantitative precipitation estimation in the Cevennes- Vivarais region, France
    • doi:10.1016/ j.jhydrol.2010.01.009
    • Kirstetter, P. E., G. Delrieu, B. Boudevillain, and C. Obled (2010), Toward an error model for radar quantitative precipitation estimation in the Cevennes- Vivarais region, France, J. Hydrol., 394(1-2), 28-41, doi:10.1016/ j.jhydrol.2010.01.009.
    • (2010) J. Hydrol. , vol.394 , Issue.1-2 , pp. 28-41
    • Kirstetter, P.E.1    Delrieu, G.2    Boudevillain, B.3    Obled, C.4
  • 32
    • 0037391208 scopus 로고    scopus 로고
    • An analysis of small-scale rainfall variability in different climatic regimes
    • DOI 10.1623/hysj.48.2.151.44694
    • Krajewski, W. F., G. J. Ciach, and E. Habib (2003), An analysis of smallscale rainfall variability in different climatic regimes, Hydrol. Sci. J., 48(2), 151-162. (Pubitemid 36435068)
    • (2003) Hydrological Sciences Journal , vol.48 , Issue.2 , pp. 151-162
    • Krajewski, W.F.1    Ciach, G.J.2    Habib, E.3
  • 33
    • 0032853041 scopus 로고    scopus 로고
    • Bayesian theory of probabilistic forecasting via deterministic hydrologic model
    • Krzysztofowicz, R. (1999), Bayesian theory of probabilistic forecasting via deterministic hydrologic model, Water Resour. Res., 35(9), 2739-2750, doi:10.1029/1999WR900099. (Pubitemid 29412106)
    • (1999) Water Resources Research , vol.35 , Issue.9 , pp. 2739-2750
    • Krzysztofowicz, R.1
  • 34
    • 0036846999 scopus 로고    scopus 로고
    • Bayesian system for probabilistic river stage forecasting
    • DOI 10.1016/S0022-1694(02)00106-3, PII S0022169402001063
    • Krzysztofowicz, R. (2002), Bayesian system for probabilistic river stage forecasting, J. Hydrol., 268(1-4), 16-40. (Pubitemid 35307221)
    • (2002) Journal of Hydrology , vol.268 , Issue.1-4 , pp. 16-40
    • Krzysztofowicz, R.1
  • 35
    • 0026470456 scopus 로고
    • Effect of rainfall errors on accuracy of design flood estimates
    • doi:10.1029/91WR03002
    • Kuczera, G., and B. J. Williams (1992), Effect of rainfall errors on accuracy of design flood estimates, Water Resour. Res., 28(4), 1145-1153, doi:10.1029/91WR03002.
    • (1992) Water Resour. Res. , vol.28 , Issue.4 , pp. 1145-1153
    • Kuczera, G.1    Williams, B.J.2
  • 36
    • 33750474092 scopus 로고    scopus 로고
    • Towards a Bayesian total error analysis of conceptual rainfall-runoff models: Characterising model error using storm-dependent parameters
    • DOI 10.1016/j.jhydrol.2006.05.010, PII S0022169406002745
    • Kuczera, G., D. Kavetski, S. Franks, and M. Thyer (2006), Towards a Bayesian total error analysis of conceptual rainfall-runoff models: Characterising model error using storm-dependent parameters, J. Hydrol., 331(1-2), 161-177. (Pubitemid 44646456)
    • (2006) Journal of Hydrology , vol.331 , Issue.1-2 , pp. 161-177
    • Kuczera, G.1    Kavetski, D.2    Franks, S.3    Thyer, M.4
  • 37
    • 77955226431 scopus 로고    scopus 로고
    • A limitedmemory acceleration strategy for MCMC sampling in hierarchical Bayesian calibration of hydrological models
    • doi:10.1029/2009WR008985
    • Kuczera, G., D. Kavetski, B. Renard, and M. Thyer (2010a), A limitedmemory acceleration strategy for MCMC sampling in hierarchical Bayesian calibration of hydrological models, Water Resour. Res., 46, W07602, doi:10.1029/2009WR008985.
    • (2010) Water Resour. Res. , vol.46
    • Kuczera, G.1    Kavetski, D.2    Renard, B.3    Thyer, M.4
  • 38
    • 78649735353 scopus 로고    scopus 로고
    • There are no hydrological monsters, just models and observations with large uncertainties!
    • Kuczera, G., B. Renard, M. Thyer, and D. Kavetski (2010b), There are no hydrological monsters, just models and observations with large uncertainties!, Hydrol. Sci. J., 55(6), 980-991z.
    • (2010) Hydrol. Sci. J. , vol.55 , Issue.6
    • Kuczera, G.1    Renard, B.2    Thyer, M.3    Kavetski, D.4
  • 39
    • 34248166114 scopus 로고    scopus 로고
    • Verification tools for probabilistic forecasts of continuous hydrological variables
    • Laio, F., and S. Tamea (2007), Verification tools for probabilistic forecasts of continuous hydrological variables, Hydrol. Earth Syst. Sci., 11(4), 1267-1277. (Pubitemid 46707033)
    • (2007) Hydrology and Earth System Sciences , vol.11 , Issue.4 , pp. 1267-1277
    • Laio, F.1    Tamea, S.2
  • 40
    • 78649745379 scopus 로고    scopus 로고
    • Extrapolation of rating curves by hydraulic modelling and its relative impact on flood frequency analysis with historical data
    • Lang, M., K. Pobanz, B. Renard, E. Renouf, and E. Sauquet (2010), Extrapolation of rating curves by hydraulic modelling and its relative impact on flood frequency analysis with historical data, Hydrol. Sci. J., 55(6), pp. 883-898.
    • (2010) Hydrol. Sci. J. , vol.55 , Issue.6 , pp. 883-898
    • Lang, M.1    Pobanz, K.2    Renard, B.3    Renouf, E.4    Sauquet, E.5
  • 42
    • 34047147929 scopus 로고    scopus 로고
    • Towards dynamic catchment modelling: A Bayesian hierarchical mixtures of experts framework
    • Marshall, L., D. Nott, and A. Sharma (2007), Towards dynamic catchment modelling: A Bayesian hierarchical mixtures of experts framework, Hydrol. Processes, 21(7), 847-861z.
    • (2007) Hydrol. Processes , vol.21 , Issue.7
    • Marshall, L.1    Nott, D.2    Sharma, A.3
  • 43
    • 77953706482 scopus 로고    scopus 로고
    • Impacts of uncertain river flow data on rainfall-runoff model calibration and discharge predictions
    • McMillan, H., J. Freer, F. Pappenberger, T. Krueger, and M. Clark (2010), Impacts of uncertain river flow data on rainfall-runoff model calibration and discharge predictions, Hydrol. Processes, 24(10), 1270-1284.
    • (2010) Hydrol. Processes , vol.24 , Issue.10 , pp. 1270-1284
    • McMillan, H.1    Freer, J.2    Pappenberger, F.3    Krueger, T.4    Clark, M.5
  • 44
    • 79952484879 scopus 로고    scopus 로고
    • Rainfall uncertainty in hydrological modelling: An evaluation of multiplicative error models
    • McMillan, H., B. Jackson, M. Clark, D. Kavetski, and R. Woods (2011), Rainfall uncertainty in hydrological modelling: An evaluation of multiplicative error models, J. Hydrol., 400(1-2), 83-94.
    • (2011) J. Hydrol. , vol.400 , Issue.1-2 , pp. 83-94
    • McMillan, H.1    Jackson, B.2    Clark, M.3    Kavetski, D.4    Woods, R.5
  • 45
    • 15744379977 scopus 로고    scopus 로고
    • The impact of tipping-bucket raingauge measurement errors on design rainfall for urban-scale applications
    • DOI 10.1002/hyp.5646
    • Molini, A., L. G. Lanza, and P. La Barbera (2005), The impact of tippingbucket raingauge measurement errors on design rainfall for urban-scale applications, Hydrol. Processes, 19(5), 1073-1088. (Pubitemid 40413089)
    • (2005) Hydrological Processes , vol.19 , Issue.5 , pp. 1073-1088
    • Molini, A.1    Lanza, L.G.2    La Barbera, P.3
  • 46
    • 78751628207 scopus 로고    scopus 로고
    • General review of rainfallrunoff modeling: Model calibration, data assimilation, and uncertainty analysis
    • edited by S. Sorooshian et al., Springer, Berlin
    • Moradkhani, H., and S. Sorooshian (2008), General review of rainfallrunoff modeling: Model calibration, data assimilation, and uncertainty analysis, in Hydrological Modelling and the Water Cycle: Coupling the Atmospheric and Hydrological Models, edited by S. Sorooshian et al., pp. 1-24, Springer, Berlin.
    • (2008) Hydrological Modelling and the Water Cycle: Coupling the Atmospheric and Hydrological Models , pp. 1-24
    • Moradkhani, H.1    Sorooshian, S.2
  • 47
    • 20844449766 scopus 로고    scopus 로고
    • Uncertainty assessment of hydrologic model states and parameters: Sequential data assimilation using the particle filter
    • DOI 10.1029/2004WR003604, W05012
    • Moradkhani, H., K. L. Hsu, H. Gupta, and S. Sorooshian (2005a), Uncertainty assessment of hydrologic model states and parameters : Sequential data assimilation using the particle filter, Water Resour. Res., 41, W05012, doi:10.1029/2004WR003604. (Pubitemid 40856462)
    • (2005) Water Resources Research , vol.41 , Issue.5 , pp. 1-17
    • Moradkhani, H.1    Hsu, K.-L.2    Gupta, H.3    Sorooshian, S.4
  • 48
    • 11944268965 scopus 로고    scopus 로고
    • Dual state-parameter estimation of hydrological models using ensemble Kalman filter
    • DOI 10.1016/j.advwatres.2004.09.002, PII S0309170804001605
    • Moradkhani, H., S. Sorooshian, H. V. Gupta, and P. R. Houser (2005b), Dual state-parameter estimation of hydrological models using ensemble Kalman filter, Adv. Water Resour., 28, 135-147. (Pubitemid 40102390)
    • (2005) Advances in Water Resources , vol.28 , Issue.2 , pp. 135-147
    • Moradkhani, H.1    Sorooshian, S.2    Gupta, H.V.3    Houser, P.R.4
  • 49
    • 33750609870 scopus 로고    scopus 로고
    • Investigating the impact of remotely sensed precipitation and hydrologic model uncertainties on the ensemble streamflow forecasting
    • DOI 10.1029/2006GL026855
    • Moradkhani, H., K. Hsu, Y. Hong, and S. Sorooshian (2006), Investigating the impact of remotely sensed precipitation and hydrologic model uncertainties on the ensemble streamflow forecasting, Geophys. Res. Lett., 33, L12401, doi:10.1029/2006GL026855. (Pubitemid 44687708)
    • (2006) Geophysical Research Letters , vol.33 , Issue.12
    • Moradkhani, H.1    Hsu, K.2    Hong, Y.3    Sorooshian, S.4
  • 50
    • 60349083109 scopus 로고    scopus 로고
    • Uncertainties on mean areal precipitation: Assessment and impact on streamflow simulations
    • Moulin, L., E. Gaume, and C. Obled (2009), Uncertainties on mean areal precipitation: Assessment and impact on streamflow simulations, Hydrol. Earth Syst. Sci., 13(2), 99-114.
    • (2009) Hydrol. Earth Syst. Sci. , vol.13 , Issue.2 , pp. 99-114
    • Moulin, L.1    Gaume, E.2    Obled, C.3
  • 51
    • 20344364134 scopus 로고    scopus 로고
    • The use of Bayesian methods for fitting rating curves, with case studies
    • DOI 10.1016/j.advwatres.2005.02.005, PII S0309170805000606
    • Moyeed, R. A., and R. T. Clarke (2005), The use of Bayesian methods for fitting rating curves, with case studies, Adv. Water Resour., 28, 807-818. (Pubitemid 40792492)
    • (2005) Advances in Water Resources , vol.28 , Issue.8 , pp. 807-818
    • Moyeed, R.A.1    Clarke, R.T.2
  • 52
    • 4544379118 scopus 로고    scopus 로고
    • Gibbs sampling for conditional spatial disaggregation of rain fields
    • DOI 10.1029/2003WR002009
    • Onibon, H., T. Lebel, A. Afouda, and G. Guillot (2004), Gibbs sampling for conditional spatial disaggregation of rain fields, Water Resour. Res., 40, W08401, doi:10.1029/2003WR002009. (Pubitemid 39247128)
    • (2004) Water Resources Research , vol.40 , Issue.8
    • Onibon, H.1    Lebel, T.2    Afouda, A.3    Guillot, G.4
  • 53
    • 33644526931 scopus 로고    scopus 로고
    • Impact of biased and randomly corrupted inputs on the efficiency and the parameters of watershed models
    • Oudin, L., C. Perrin, T. Mathevet, V. Andreassian, and C. Michel (2006), Impact of biased and randomly corrupted inputs on the efficiency and the parameters of watershed models, J. Hydrol., 320(1-2), 62-83.
    • (2006) J. Hydrol. , vol.320 , Issue.1-2 , pp. 62-83
    • Oudin, L.1    Perrin, C.2    Mathevet, T.3    Andreassian, V.4    Michel, C.5
  • 54
    • 0141682120 scopus 로고    scopus 로고
    • Improvement of a parsimonious model for streamflow simulation
    • DOI 10.1016/S0022-1694(03)00225-7
    • Perrin, C., C. Michel, and V. Andreassian (2003), Improvement of a parsimonious model for streamflow simulation, J. Hydrol., 279(1-4), 275-289. (Pubitemid 37143319)
    • (2003) Journal of Hydrology , vol.279 , Issue.1-4 , pp. 275-289
    • Perrin, C.1    Michel, C.2    Andreassian, V.3
  • 55
    • 0024486417 scopus 로고
    • Recursive parameter-estimation of hydrologic-models
    • doi:10.1029/WR025i002p00281z
    • Rajaram, H., and K. P. Georgakakos (1989), Recursive parameter-estimation of hydrologic-models, Water Resour. Res., 25(2), 281-294, doi:10.1029/ WR025i002p00281z.
    • (1989) Water Resour. Res. , vol.25 , Issue.2 , pp. 281-294
    • Rajaram, H.1    Georgakakos, K.P.2
  • 56
    • 62949204448 scopus 로고    scopus 로고
    • Uncertainty assessment via Bayesian revision of ensemble streamflow predictions in the operational river Rhine forecasting system
    • doi:10.1029/2007WR006758
    • Reggiani, P., M. Renner, A. H. Weerts, and P. van Gelder (2009), Uncertainty assessment via Bayesian revision of ensemble streamflow predictions in the operational river Rhine forecasting system, Water Resour. Res., 45, W02428, doi:10.1029/2007WR006758.
    • (2009) Water Resour. Res. , vol.45
    • Reggiani, P.1    Renner, M.2    Weerts, A.H.3    Van Gelder, P.4
  • 57
    • 72149112778 scopus 로고    scopus 로고
    • Analyzing input and structural uncertainty of nonlinear dynamic models with stochastic, time-dependent parameters
    • doi:10.1029/2009WR007814
    • Reichert, P., and J. Mieleitner (2009), Analyzing input and structural uncertainty of nonlinear dynamic models with stochastic, time-dependent parameters, Water Resour. Res., 45,W10402, doi:10.1029/2009WR007814.
    • (2009) Water Resour. Res. , vol.45
    • Reichert, P.1    Mieleitner, J.2
  • 58
    • 54949158157 scopus 로고    scopus 로고
    • Data assimilation methods in the Earth sciences
    • doi:10.1016/j.advwatres.2008.01.001z
    • Reichle, R. H. (2008), Data assimilation methods in the Earth sciences, Adv. Water Resour., 31(11), 1411-1418, doi:10.1016/j.advwatres.2008.01.001z.
    • (2008) Adv. Water Resour. , vol.31 , Issue.11 , pp. 1411-1418
    • Reichle, R.H.1
  • 59
    • 0036322061 scopus 로고    scopus 로고
    • Hydrologic data assimilation with the ensemble Kalman filter
    • Reichle, R. H., D. B. McLaughlin, and D. Entekhabi (2002), Hydrologic data assimilation with the ensemble Kalman filter, Mon. Weather Rev., 130(1), 103-114. (Pubitemid 34838242)
    • (2002) Monthly Weather Review , vol.130 , Issue.1 , pp. 103-114
    • Reichle, R.H.1    McLaughlin, D.B.2    Entekhabi, D.3
  • 60
    • 67349137712 scopus 로고    scopus 로고
    • Bayesian methods for estimating multi-segment discharge rating curves
    • Reitan, T., and A. Petersen-Overleir (2009), Bayesian methods for estimating multi-segment discharge rating curves, Stochastic Environ. Res. Risk Assess., 23, 627-642.
    • (2009) Stochastic Environ. Res. Risk Assess. , vol.23 , pp. 627-642
    • Reitan, T.1    Petersen-Overleir, A.2
  • 61
    • 77950177246 scopus 로고    scopus 로고
    • Understanding predictive uncertainty in hydrologic modeling: The challenge of identifying input and structural errors
    • doi:10.1029/2009WR008328
    • Renard, B., D. Kavetski, M. Thyer, G. Kuczera, and S. W. Franks (2010), Understanding predictive uncertainty in hydrologic modeling: The challenge of identifying input and structural errors, Water Resour. Res., 46, W05521, doi:10.1029/2009WR008328.
    • (2010) Water Resour. Res. , vol.46
    • Renard, B.1    Kavetski, D.2    Thyer, M.3    Kuczera, G.4    Franks, S.W.5
  • 62
    • 33847615314 scopus 로고    scopus 로고
    • Probabilistic inference for future climate using an ensemble of climate model evaluations
    • Rougier, J. C. (2007), Probabilistic inference for future climate using an ensemble of climate model evaluations, Clim. Change, 81, 247-264.
    • (2007) Clim. Change , vol.81 , pp. 247-264
    • Rougier, J.C.1
  • 63
    • 70249132985 scopus 로고    scopus 로고
    • Assessing parameter, precipitation, and predictive uncertainty in a distributed hydrological model using sequential data assimilation with the particle filter
    • Salamon, P., and L. Feyen (2009), Assessing parameter, precipitation, and predictive uncertainty in a distributed hydrological model using sequential data assimilation with the particle filter, J. Hydrol., 376(3-4), 428-442.
    • (2009) J. Hydrol. , vol.376 , Issue.3-4 , pp. 428-442
    • Salamon, P.1    Feyen, L.2
  • 64
    • 78649960487 scopus 로고    scopus 로고
    • Disentangling uncertainties in distributed hydrological modeling using multiplicative error models and sequential data assimilation
    • doi:10.1029/2009WR009022
    • Salamon, P., and L. Feyen (2010), Disentangling uncertainties in distributed hydrological modeling using multiplicative error models and sequential data assimilation, Water Resour. Res., 46, W12501, doi:10.1029/2009WR009022.
    • (2010) Water Resour. Res. , vol.46
    • Salamon, P.1    Feyen, L.2
  • 65
    • 77954727893 scopus 로고    scopus 로고
    • A formal likelihood function for parameter and predictive inference of hydrologic models with correlated, heteroscedastic, and non-Gaussian errors
    • doi:10.1029/2009WR008933
    • Schoups, G., and J. A. Vrugt (2010), A formal likelihood function for parameter and predictive inference of hydrologic models with correlated, heteroscedastic, and non-Gaussian errors, Water Resour. Res., 46, W10531, doi:10.1029/2009WR008933.
    • (2010) Water Resour. Res. , vol.46
    • Schoups, G.1    Vrugt, J.A.2
  • 66
    • 84856608113 scopus 로고    scopus 로고
    • A statistical post-processor for accounting of hydrologic uncertainty in short-range ensemble streamflow prediction
    • Seo, D.-J., H. D. Herr, and J. C. Schaake (2006), A statistical post-processor for accounting of hydrologic uncertainty in short-range ensemble streamflow prediction, Hydrol. Earth Syst. Sci. Discuss., 3, 1987-2035. (Pubitemid 46889088)
    • (2006) Hydrology and Earth System Sciences Discussions , vol.3 , Issue.4 , pp. 1987-2035
    • Seo, D.-J.1    Herr, H.D.2    Schaake, J.C.3
  • 67
    • 28944439365 scopus 로고    scopus 로고
    • Spatiotemporal models in the estimation of area precipitation
    • DOI 10.1002/env.733
    • Severino, E., and T. Alpuim (2005), Spatiotemporal models in the estimation of area precipitation, Environmetrics, 16, 773-802. (Pubitemid 41784648)
    • (2005) Environmetrics , vol.16 , Issue.8 , pp. 773-802
    • Severino, E.1    Alpuim, T.2
  • 68
    • 39749173002 scopus 로고    scopus 로고
    • Detection of structural inadequacy in process-based hydrological models: A particle-filtering approach
    • DOI 10.1029/2006WR005205
    • Smith, P. J., K. J. Beven, and J. A. Tawn (2008), Detection of structural inadequacy in process-based hydrological models: A particle-filtering approach, Water Resour. Res., 44,W01410, doi:10.1029/2006WR005205. (Pubitemid 351304135)
    • (2008) Water Resources Research , vol.44 , Issue.1
    • Smith, P.J.1    Beven, K.J.2    Tawn, J.A.3
  • 69
    • 78650986160 scopus 로고    scopus 로고
    • Development of a formal likelihood function for improved Bayesian inference of ephemeral catchments
    • doi:10.1029/2010WR009514
    • Smith, T., A. Sharma, L. Marshall, R. Mehrotra, and S. Sisson (2010), Development of a formal likelihood function for improved Bayesian inference of ephemeral catchments, Water Resour. Res., 46, W12551, doi:10.1029/2010WR009514.
    • (2010) Water Resour. Res. , vol.46
    • Smith, T.1    Sharma, A.2    Marshall, L.3    Mehrotra, R.4    Sisson, S.5
  • 72
    • 69849096009 scopus 로고    scopus 로고
    • Critical evaluation of parameter consistency and predictive uncertainty in hydrological modeling: A case study using Bayesian total error analysis
    • doi:10.1029/ 2008WR006825
    • Thyer, M., B. Renard, D. Kavetski, G. Kuczera, S. W. Franks, and S. Srikanthan (2009), Critical evaluation of parameter consistency and predictive uncertainty in hydrological modeling: A case study using Bayesian total error analysis, Water Resour. Res., 45, W00B14, doi:10.1029/ 2008WR006825.
    • (2009) Water Resour. Res. , vol.45
    • Thyer, M.1    Renard, B.2    Kavetski, D.3    Kuczera, G.4    Franks, S.W.5    Srikanthan, S.6
  • 73
    • 66049147497 scopus 로고    scopus 로고
    • A model conditional processor to assess predictive uncertainty in flood forecasting
    • Todini, E. (2008), A model conditional processor to assess predictive uncertainty in flood forecasting, Int. J. River Basin Manage., 6(2), 123-137.
    • (2008) Int. J. River Basin Manage. , vol.6 , Issue.2 , pp. 123-137
    • Todini, E.1
  • 74
    • 0000828377 scopus 로고
    • Implementation of the three-dimensional turning bands random field generator
    • doi:10.1029/WR025i010p02227
    • Tompson, A. F. B., R. Ababou, and L. W. Gelhar (1989), Implementation of the three-dimensional turning bands random field generator, Water Resour. Res., 25(10), 2227-2243, doi:10.1029/WR025i010p02227.
    • (1989) Water Resour. Res. , vol.25 , Issue.10 , pp. 2227-2243
    • Tompson, A.F.B.1    Ababou, R.2    Gelhar, L.W.3
  • 75
    • 53149098655 scopus 로고    scopus 로고
    • Rainfall and sampling uncertainties: A rain gauge perspective
    • doi:10.1029/2007JD009214
    • Villarini, G., P. V. Mandapaka, W. F. Krajewski, and R. J. Moore (2008), Rainfall and sampling uncertainties: A rain gauge perspective, J. Geophys. Res., 113, D11102, doi:10.1029/2007JD009214.
    • (2008) J. Geophys. Res. , vol.113
    • Villarini, G.1    Mandapaka, P.V.2    Krajewski, W.F.3    Moore, R.J.4
  • 76
    • 69549114707 scopus 로고    scopus 로고
    • Conditional simulation schemes of rain fields and their application to rainfall-runoff modeling studies in the Sahel
    • Vischel, T., T. Lebel, S. Massuel, and B. Cappelaere (2009), Conditional simulation schemes of rain fields and their application to rainfall-runoff modeling studies in the Sahel, J. Hydrol., 375(1-2), 273-286.
    • (2009) J. Hydrol. , vol.375 , Issue.1-2 , pp. 273-286
    • Vischel, T.1    Lebel, T.2    Massuel, S.3    Cappelaere, B.4
  • 77
    • 14944365603 scopus 로고    scopus 로고
    • Improved treatment of uncertainty in hydrologic modeling: Combining the strengths of global optimization and data assimilation
    • DOI 10.1029/2004WR003059, W01017
    • Vrugt, J. A., C. G. H. Diks, H. V. Gupta, W. Bouten, and J. M. Verstraten (2005), Improved treatment of uncertainty in hydrologic modeling: Combining the strengths of global optimization and data assimilation, Water Resour. Res., 41, W01017, doi:10.1029/2004WR003059. (Pubitemid 40359297)
    • (2005) Water Resources Research , vol.41 , Issue.1 , pp. 1-17
    • Vrugt, J.A.1    Diks, C.G.H.2    Gupta, H.V.3    Bouten, W.4    Verstraten, J.M.5
  • 78
    • 57049099445 scopus 로고    scopus 로고
    • Treatment of input uncertainty in hydrologic modeling: Doing hydrology backward with Markov chain Monte Carlo simulation
    • doi:10.1029/2007WR006720
    • Vrugt, J. A., C. J. F. ter Braak, M. P. Clark, J. M. Hyman, and B. A. Robinson (2008), Treatment of input uncertainty in hydrologic modeling: Doing hydrology backward with Markov chain Monte Carlo simulation, Water Resour. Res., 44, W00B09, doi:10.1029/2007WR006720.
    • (2008) Water Resour. Res. , vol.44
    • Vrugt, J.A.1    Ter Braak, C.J.F.2    Clark, M.P.3    Hyman, J.M.4    Robinson, B.A.5
  • 79
    • 33750368306 scopus 로고    scopus 로고
    • Particle filtering and ensemble Kalman filtering for state updating with hydrological conceptual rainfall- runoff models
    • doi:10.1029/ 2005WR004093
    • Weerts, A. H., and G. Y. H. El Serafy (2006), Particle filtering and ensemble Kalman filtering for state updating with hydrological conceptual rainfall- runoff models, Water Resour. Res., 42, W09403, doi:10.1029/ 2005WR004093.
    • (2006) Water Resour. Res. , vol.42
    • Weerts, A.H.1    El Serafy, G.Y.H.2
  • 80
    • 0035648266 scopus 로고    scopus 로고
    • Stochastic description of the rainfall input errors in lumped hydrological models
    • Willems, P. (2001), Stochastic description of the rainfall input errors in lumped hydrological models, Stochastic Environ. Res. Risk Assess., 15(2), 132-152.
    • (2001) Stochastic Environ. Res. Risk Assess. , vol.15 , Issue.2 , pp. 132-152
    • Willems, P.1
  • 81
    • 0032051939 scopus 로고    scopus 로고
    • Data-based mechanistic modelling of environmental, ecological, economic and engineering systems
    • DOI 10.1016/S1364-8152(98)00011-5, PII S1364815298000115
    • Young, P. (1998), Data-based mechanistic modelling of environmental, ecological, economic and engineering systems, Environ. Modell. Software, 13(2), 105-122. (Pubitemid 28514812)
    • (1998) Environmental Modelling and Software , vol.13 , Issue.2 , pp. 105-122
    • Young, P.1
  • 82
    • 0035895094 scopus 로고    scopus 로고
    • Identification of non-linear stochastic systems by state dependent parameter estimation
    • Young, P., P. McKenna, and J. Bruun (2001), Identification of non-linear stochastic systems by state dependent parameter estimation, Int. J. Control, 74(18), 1837-1857.
    • (2001) Int. J. Control , vol.74 , Issue.18 , pp. 1837-1857
    • Young, P.1    McKenna, P.2    Bruun, J.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.