메뉴 건너뛰기




Volumn , Issue DEC, 2012, Pages

Learned graphical models for probabilistic planning provide a new class of movement primitives

Author keywords

Graphical models; Motor planning; Movement primitives; Optimal control; Reinforcement learning

Indexed keywords

BIOLOGICAL MOVEMENTS; CONTROL POLICY; FUNCTION PARAMETERS; GRAPHICAL MODEL; ITS EFFICIENCIES; MOTOR PLANNING; MOTOR SKILL LEARNING; MOVEMENT PRIMITIVES; OPTIMAL CONTROLS; OPTIMALITY; PARAMETRIZATIONS; PROBABILISTIC INFERENCE; PROBABILISTIC PLANNING; REFERENCE TRAJECTORIES; SALIENT FEATURES; STOCHASTIC OPTIMAL CONTROL; SYSTEM DYNAMICS; VIA POINT;

EID: 84871259138     PISSN: 16625188     EISSN: None     Source Type: Journal    
DOI: 10.3389/fncom.2012.00097     Document Type: Article
Times cited : (10)

References (35)
  • 5
    • 33749447302 scopus 로고    scopus 로고
    • Properties of Synergies Arising from a Theory of Optimal Motor Behavior
    • Manu Chhabra and Robert A. Jacobs. Properties of Synergies Arising from a Theory of Optimal Motor Behavior. Neural Computation, 18:2320-2342, 2006.
    • (2006) Neural Computation , vol.18 , pp. 2320-2342
    • Chhabra, M.1    Jacobs, R.A.2
  • 6
    • 78649521095 scopus 로고    scopus 로고
    • Modularity for Sensorimotor Control: Evidence and a New Prediction
    • Andrea d'Avella and Dinesh K Pai. Modularity for Sensorimotor Control: Evidence and a New Prediction. Journal of Motor Behavior, 42(6):361-369, 2010.
    • (2010) Journal of Motor Behavior , vol.42 , Issue.6 , pp. 361-369
    • D'Avella, A.1    Pai Dinesh, K.2
  • 7
    • 0037374448 scopus 로고    scopus 로고
    • Combinations of Muscle Synergies in the Construction of a Natural Motor Behavior
    • March
    • Andrea d'Avella, Philippe Saltiel, and Emilio Bizzi. Combinations of Muscle Synergies in the Construction of a Natural Motor Behavior. Nature, 6(3): 300-308, March 2003.
    • (2003) Nature , vol.6 , Issue.3 , pp. 300-308
    • D'Avella, A.1    Saltiel, P.2    Bizzi, E.3
  • 8
    • 0042879997 scopus 로고    scopus 로고
    • Reducing the Time Complexity of the Derandomized Evolution Strategy with Covariance Matrix Adaptation (CMA-ES)
    • N. Hansen, S.D. Muller, and P. Koumoutsakos. Reducing the Time Complexity of the Derandomized Evolution Strategy with Covariance Matrix Adaptation (CMA-ES). Evolutionary Computation, 11(1):1-18, 2003.
    • (2003) Evolutionary Computation , vol.11 , Issue.1 , pp. 1-18
    • Hansen, N.1    Muller, S.D.2    Koumoutsakos, P.3
  • 9
    • 70350567816 scopus 로고    scopus 로고
    • Neuroevolution Strategies for Episodic Reinforcement Learning
    • oct
    • V. Heidrich-Meisner and C. Igel. Neuroevolution Strategies for Episodic Reinforcement Learning. Journal of Algorithms, 64(4):152-168, oct 2009a.
    • (2009) Journal of Algorithms , vol.64 , Issue.4 , pp. 152-168
    • Heidrich-Meisner, V.1    Igel, C.2
  • 14
    • 80053623760 scopus 로고    scopus 로고
    • Learning Stable Non-Linear Dynamical Systems with Gaussian Mixture Models
    • S. M. Khansari-Zadeh and Aude Billard. Learning Stable Non-Linear Dynamical Systems with Gaussian Mixture Models. IEEE Transaction on Robotics, 27 (5):943-957, 2011.
    • (2011) IEEE Transaction On Robotics , vol.27 , Issue.5 , pp. 943-957
    • Khansari-Zadeh, S.M.1    Billard, A.2
  • 23
    • 44949241322 scopus 로고    scopus 로고
    • Reinforcement Learning of Motor Skills with Policy Gradients
    • J. Peters and S. Schaal. Reinforcement Learning of Motor Skills with Policy Gradients. Neural Networks, (4):682-697, 2008.
    • (2008) Neural Networks , vol.4 , pp. 682-697
    • Peters, J.1    Schaal, S.2
  • 25
    • 84871264106 scopus 로고    scopus 로고
    • Stochastic Optimal Control Methods for Investigating the Power of Morphological Computation
    • ACCEPTED for publication
    • Elmar A. Rückert and Gerhard Neumann. Stochastic Optimal Control Methods for Investigating the Power of Morphological Computation. Artificial Life, pages 1-33, 2012. ACCEPTED for publication.
    • (2012) Artificial Life , pp. 1-33
    • Rückert, E.A.1    Neumann, G.2
  • 28
    • 77955836276 scopus 로고    scopus 로고
    • Reinforcement Learning of Motor Skills in High Dimensions: A Path Integral Approach
    • ICRA, 2010 IEEE International Conference On
    • E.Theodorou, J. Buchli, and S. Schaal. Reinforcement Learning of Motor Skills in High Dimensions: a Path Integral Approach. In Robotics and Automation (ICRA), 2010 IEEE International Conference on, pages 2397-2403, 2010.
    • (2010) Robotics and Automation , pp. 2397-2403
    • Theodorou, E.1    Buchli, J.2    Schaal, S.3
  • 29
    • 0036829017 scopus 로고    scopus 로고
    • Optimal feedback control as a theory of motor coordination
    • E. Todorov and M. Jordan. Optimal feedback control as a theory of motor coordination. Nature Neuroscience, 5:1226-1235, 2002.
    • (2002) Nature Neuroscience , vol.5 , pp. 1226-1235
    • Todorov, E.1    Jordan, M.2
  • 30
    • 23944452693 scopus 로고    scopus 로고
    • A generalized Iterative LQG Method for Locally-Optimal Feedback Control of Constrained Nonlinear Stochastic Systems
    • Volume 1 of ACC 2005, Portland, Oregon, USA
    • E. Todorov and Weiwei Li. A generalized Iterative LQG Method for Locally-Optimal Feedback Control of Constrained Nonlinear Stochastic Systems. In Proceedings of the 24th American Control Conference, volume 1 of (ACC 2005), pages 300- 306, Portland, Oregon, USA, 2005.
    • (2005) Proceedings of the 24th American Control Conference , pp. 300-306
    • Todorov, E.1    Li, W.2
  • 31
    • 71149083296 scopus 로고    scopus 로고
    • Robot Trajectory Optimization using Approximate Inference
    • ICML 2009, Marc Toussaint, Montreal, Canada
    • Marc Toussaint. Robot Trajectory Optimization using Approximate Inference. In Proceedings of the 26th International Conference on Machine Learning, (ICML 2009), pages 1049-1056, Montreal, Canada, 2009.
    • (2009) Proceedings of the 26th International Conference On Machine Learning , pp. 1049-1056
  • 33
    • 27144556425 scopus 로고    scopus 로고
    • Incremental Online Learning in High Dimensions
    • dec
    • S. Vijayakumar, A. D'Souza, and S. Schaal. Incremental Online Learning in High Dimensions. Neural Computation, 17(12):2602-2634, dec 2005.
    • (2005) Neural Computation , vol.17 , Issue.12 , pp. 2602-2634
    • Vijayakumar, S.1    D'Souza, A.2    Schaal, S.3
  • 35
    • 0000337576 scopus 로고
    • Simple Statistical Gradient-Following Algorithms for Con-nectionist Reinforcement Learning
    • Ronald J. Williams. Simple Statistical Gradient-Following Algorithms for Con-nectionist Reinforcement Learning. Machine Learning, 8:229-256, 1992.
    • (1992) Machine Learning , vol.8 , pp. 229-256
    • Williams, R.J.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.