메뉴 건너뛰기




Volumn 37, Issue 4, 2012, Pages 331-344

Use of machine learning techniques for educational proposes: A decision support system for forecasting students' grades

Author keywords

Decision support tools; Educational data mining; Machine learning

Indexed keywords

DECISION SUPPORT TOOLS; DEMOGRAPHIC CHARACTERISTICS; EDUCATIONAL DATA MINING; EDUCATIONAL SETTINGS; LOG FILE; MACHINE LEARNING TECHNIQUES; PROTOTYPE VERSIONS; REGRESSION METHOD; SOFTWARE SUPPORT; STUDENT'S PERFORMANCE; TRAINING SETS; VIRTUAL COURSE;

EID: 84871069884     PISSN: 02692821     EISSN: None     Source Type: Journal    
DOI: 10.1007/s10462-011-9234-x     Document Type: Article
Times cited : (176)

References (54)
  • 1
    • 77957286385 scopus 로고    scopus 로고
    • Combining unsupervised and supervised classification to build user models for exploratory learning environments
    • Amershi S, Conati C (2009) Combining unsupervised and supervised classification to build user models for exploratory learning environments. J Educ Data Min 1(1):18-71
    • (2009) J Educ Data Min , vol.1 , Issue.1 , pp. 18-71
    • Amershi, S.1    Conati, C.2
  • 2
    • 77957257328 scopus 로고    scopus 로고
    • Application of machine learning techniques to analyse student interactions and improve the collaboration process
    • Anaya AR, Boticario JG (2011) Application of machine learning techniques to analyse student interactions and improve the collaboration process. Expert Syst Appl 38:1171-1181
    • (2011) Expert Syst Appl , vol.38 , pp. 1171-1181
    • Anaya, A.R.1    Boticario, J.G.2
  • 3
    • 33846007734 scopus 로고    scopus 로고
    • Predicting end-of-year accountability assessment scores from monthly student records in an online tutoring system
    • California, USA
    • Anozie N, Junker BW (2006) Predicting end-of-year accountability assessment scores from monthly student records in an online tutoring system. In Educational data mining AAAI workshop, California, USA, pp 1-6
    • (2006) Educational Data Mining AAAI Workshop , pp. 1-6
    • Anozie, N.1    Junker, B.W.2
  • 5
    • 77954605151 scopus 로고    scopus 로고
    • The state of educational data mining in 2009: A review and future visions
    • Baker RSJD, Yacef K (2009) The state of educational data mining in 2009: a review and future visions. J Educ Data Min 1(1):3-17
    • (2009) J Educ Data Min , vol.1 , Issue.1 , pp. 3-17
    • Baker, R.S.J.D.1    Yacef, K.2
  • 6
    • 38849151677 scopus 로고    scopus 로고
    • User models for adaptive hypermedia and adaptive educational systems
    • The adaptive web, Springer, Berlin
    • Brusilovsky P, Millán E (2007) User models for adaptive hypermedia and adaptive educational systems. In The adaptive web. LNCS 4321, Springer, Berlin, pp 3-53
    • (2007) LNCS , vol.4321 , pp. 3-53
    • Brusilovsky, P.1    Millán, E.2
  • 7
    • 77957705675 scopus 로고    scopus 로고
    • Data mining application on students' data
    • Buldu A, Ü̧gün K (2010) Data mining application on students' data. Procedia Soc Behav Sci 2:5251-5259
    • (2010) Procedia Soc Behav Sci , vol.2 , pp. 5251-5259
    • Buldu, A.1    Ü̧gün, K.2
  • 9
    • 77249122934 scopus 로고    scopus 로고
    • Using data mining techniques to automatically construct conceptmaps for adaptive learning systems
    • Chen S-M, Bai S-M (2010) Using data mining techniques to automatically construct conceptmaps for adaptive learning systems. Expert Syst Appl 37:4496-4503
    • (2010) Expert Syst Appl , vol.37 , pp. 4496-4503
    • Chen, S.-M.1    Bai, S.-M.2
  • 10
    • 33845621876 scopus 로고    scopus 로고
    • Mining learner profile utilizing association rule for web-based learning diagnosis
    • Chen CM, Hsieh YL, Hsu SH (2007a) Mining learner profile utilizing association rule for web-based learning diagnosis. Expert Syst Appl 33(1):6-22
    • (2007) Expert Syst Appl , vol.33 , Issue.1 , pp. 6-22
    • Chen, C.M.1    Hsieh, Y.L.2    Hsu, S.H.3
  • 11
    • 36248929802 scopus 로고    scopus 로고
    • Learning performance assessment approach using web-based learning portfolios for e-learning systems
    • November
    • Chen C-M, Chen Y-Y, Liu C-Y (2007b) Learning Performance Assessment Approach Using Web-Based Learning Portfolios for E-learning Systems, IEEE Trans Syst Man Cybern C Appl Rev 37(6) November
    • (2007) IEEE Trans Syst Man Cybern C Appl Rev , vol.37 , Issue.6
    • Chen, C.-M.1    Chen, Y.-Y.2    Liu, C.-Y.3
  • 13
    • 79952042059 scopus 로고    scopus 로고
    • What can instructors and policy makers learn about Web-supported learning through Web-usage mining
    • doi:10.1016/j.iheduc.2010.07.008
    • Cohen A, Nachmias R (2010) What can instructors and policy makers learn about Web-supported learning through Web-usage mining, Internet and Higher Education. doi:10.1016/j.iheduc.2010.07.008
    • (2010) Internet and Higher Education
    • Cohen, A.1    Nachmias, R.2
  • 15
    • 78049421754 scopus 로고    scopus 로고
    • A comparative analysis of machine learning techniques for student retention management
    • Delen D (2010) A comparative analysis of machine learning techniques for student retention management. Decis Support Syst 49:498-506
    • (2010) Decis Support Syst , vol.49 , pp. 498-506
    • Delen, D.1
  • 16
    • 43549126867 scopus 로고    scopus 로고
    • Construction and analysis of educational tests using abductive machine learning
    • El-Alfy EM, Abdel-Aal RE (2008) Construction and analysis of educational tests using abductive machine learning. Comput Educ 51:1-16
    • (2008) Comput Educ , vol.51 , pp. 1-16
    • El-Alfy, E.M.1    Abdel-Aal, R.E.2
  • 17
    • 33750580217 scopus 로고    scopus 로고
    • Survey of data mining approaches to user modeling for adaptive hypermedia
    • Frias-Martinez E, Chen SY, Liu X (2006) Survey of data mining approaches to user modeling for adaptive hypermedia. IEEE Trans Syst Man Cybern C Appl Rev 36(2):734-748
    • (2006) IEEE Trans Syst Man Cybern C Appl Rev , vol.36 , Issue.2 , pp. 734-748
    • Frias-Martinez, E.1    Chen, S.Y.2    Liu, X.3
  • 18
    • 84871046274 scopus 로고    scopus 로고
    • A collaborative educational association rule mining tool, A collaborative educational association rule mining tool
    • doi:10.1016/j.iheduc.2010.07.006
    • García E, Romero C, Ventura S, de Castro C (2010) A collaborative educational association rule mining tool, A collaborative educational association rule mining tool, Internet and Higher Education. doi:10.1016/j.iheduc.2010.07.006
    • (2010) Internet and Higher Education
    • García, E.1    Romero, C.2    Ventura, S.3    De Castro, C.4
  • 19
    • 67650448176 scopus 로고    scopus 로고
    • Implement web learning environment based on data mining
    • Guo Q, Zhang M (2009) Implement web learning environment based on data mining. Knowl-Based Syst 22:439-442
    • (2009) Knowl-Based Syst , vol.22 , pp. 439-442
    • Guo, Q.1    Zhang, M.2
  • 22
    • 77956016016 scopus 로고    scopus 로고
    • Learning about online learning processes and students' motivation through web usage mining
    • Special series of Chais Conference 2009 best papers
    • Hershkovitz A, Nachmias R (2009) Learning about online learning processes and students' motivation through web usage mining. Interdiscip J E-Learning and Learning Objects, 5,197-215, Special series of Chais Conference 2009 best papers
    • (2009) Interdiscip J E-Learning and Learning Objects , vol.5 , pp. 197-215
    • Hershkovitz, A.1    Nachmias, R.2
  • 23
    • 34248545084 scopus 로고    scopus 로고
    • Course planning of extension education to meet market demand by using data mining techniques-an example of Chinkuo technology university in Taiwan
    • Hsia T-C, Shie A-J, Chen L-C (2008) Course planning of extension education to meet market demand by using data mining techniques-an example of Chinkuo technology university in Taiwan. Expert Syst Appl 34:596-602
    • (2008) Expert Syst Appl , vol.34 , pp. 596-602
    • Hsia, T.-C.1    Shie, A.-J.2    Chen, L.-C.3
  • 24
    • 34248566912 scopus 로고    scopus 로고
    • A personalized English learning recommender system for ESL students
    • Hsu MH (2008) A personalized English learning recommender system for ESL students. Expert Syst Appl 34(1):683-688
    • (2008) Expert Syst Appl , vol.34 , Issue.1 , pp. 683-688
    • Hsu, M.H.1
  • 25
    • 78449249359 scopus 로고    scopus 로고
    • Classification and prediction of academic talent using data mining techniques
    • Jantan H, Hamdan AR, Othman ZA (2010) Classification and prediction of academic talent using data mining techniques, KES 2010, Part I, LNAI 6276, pp 491-500
    • (2010) KES 2010, Part I, LNAI , vol.6276 , pp. 491-500
    • Jantan, H.1    Hamdan, A.R.2    Othman, Z.A.3
  • 26
    • 79955827700 scopus 로고    scopus 로고
    • Activity sequencemodeling and dynamic clustering for personalized e-learning
    • doi:10.1007/s11257-010-9087-z
    • Kock M, ParamythisA(2011) Activity sequencemodeling and dynamic clustering for personalized e-learning, User Model User-Adap Inter. doi:10.1007/s11257-010-9087-z
    • (2011) User Model User-Adap Inter
    • Kock, M.1    Paramythis, A.2
  • 27
    • 2942552288 scopus 로고    scopus 로고
    • Predicting Students' Performance in distance learning using machine learning techniques
    • Kotsiantis S, Pierrakeas C, Pintelas P (2004) Predicting Students' Performance in distance learning using machine learning techniques. Appl Artif Intell (AAI) 18(5):411-426
    • (2004) Appl Artif Intell (AAI) , vol.18 , Issue.5 , pp. 411-426
    • Kotsiantis, S.1    Pierrakeas, C.2    Pintelas, P.3
  • 28
    • 56349170169 scopus 로고    scopus 로고
    • Mining students' behavior in web-based learning programs
    • Lee MW, Chen SY, Chrysostomou K, Liu X (2009) Mining students' behavior in web-based learning programs. Expert Syst Appl 36:3459-3464
    • (2009) Expert Syst Appl , vol.36 , pp. 3459-3464
    • Lee, M.W.1    Chen, S.Y.2    Chrysostomou, K.3    Liu, X.4
  • 29
    • 79151474260 scopus 로고    scopus 로고
    • An empirical analysis on auto corporation training program planning by data mining techniques
    • LinWT,Wang SJ,Wub YC, Ye TC (2011) An empirical analysis on auto corporation training program planning by data mining techniques. Expert Syst Appl 38:5841-5850
    • (2011) Expert Syst Appl , vol.38 , pp. 5841-5850
    • Lin, W.T.1    Wang, S.J.2    Wub, Y.C.3    Ye, T.C.4
  • 30
    • 67650236153 scopus 로고    scopus 로고
    • Dropout prediction in e-learning courses through the combination of machine learning techniques
    • Lykourentzou I, Giannoukos I, Nikolopoulos V, Mpardis G, Loumos V (2009) Dropout prediction in e-learning courses through the combination of machine learning techniques. Comput and Educ 53:950-965
    • (2009) Comput and Educ , vol.53 , pp. 950-965
    • Lykourentzou, I.1    Giannoukos, I.2    Nikolopoulos, V.3    Mpardis, G.4    Loumos, V.5
  • 31
    • 71549171729 scopus 로고    scopus 로고
    • Mining LMS data to develop an "early warning system" for educators: A proof of concept
    • Macfadyen LP, Dawson S (2010) Mining LMS data to develop an "early warning system" for educators: a proof of concept. Comput Educ 54:588-599
    • (2010) Comput Educ , vol.54 , pp. 588-599
    • MacFadyen, L.P.1    Dawson, S.2
  • 32
    • 3042583485 scopus 로고    scopus 로고
    • Top-down induction of model trees with regression and splitting nodes
    • Malerba D, Esposito F, Ceci M (2004) Top-down induction of model trees with regression and splitting nodes. IEEE Trans Pattern Anal Mach Intell 26(5):612-625
    • (2004) IEEE Trans Pattern Anal Mach Intell , vol.26 , Issue.5 , pp. 612-625
    • Malerba, D.1    Esposito, F.2    Ceci, M.3
  • 33
    • 41949129128 scopus 로고    scopus 로고
    • Predicting who will drop out of nursing courses: A machine learning exercise
    • Moseley LG, Mead DM (2008) Predicting who will drop out of nursing courses: a machine learning exercise. Nurse Educ Today 28:469-475
    • (2008) Nurse Educ Today , vol.28 , pp. 469-475
    • Moseley, L.G.1    Mead, D.M.2
  • 34
    • 53849126165 scopus 로고    scopus 로고
    • Neural networks and statistical techniques: A review of applications
    • Paliwala M, Kumar UA (2009) Neural networks and statistical techniques: a review of applications. Expert Syst Appl 36(1):2-17
    • (2009) Expert Syst Appl , vol.36 , Issue.1 , pp. 2-17
    • Paliwala, M.1    Kumar, U.A.2
  • 35
    • 66149164588 scopus 로고    scopus 로고
    • Clustering and sequential pattern mining of online collaborative learning data
    • Perera D, Kay J, Koprinska I, Yacef K, Zaïne OR (2009) Clustering and sequential pattern mining of online collaborative learning data. IEEE Trans Knowl Data Eng 21(6):759-772
    • (2009) IEEE Trans Knowl Data Eng , vol.21 , Issue.6 , pp. 759-772
    • Perera, D.1    Kay, J.2    Koprinska, I.3    Yacef, K.4    Zaïne, O.R.5
  • 36
    • 0001171722 scopus 로고    scopus 로고
    • Using sparseness and analytic QP to speed training of support vector machines
    • Kearns MS, Solla SA, Cohn DA (eds). MIT Press, MA
    • Platt J (1999) Using sparseness and analytic QP to speed training of support vector machines. In: Kearns MS, Solla SA, Cohn DA (eds) Advances in neural information processing systems 11. MIT Press, MA
    • (1999) Advances in Neural Information Processing Systems , vol.11
    • Platt, J.1
  • 37
    • 0141990695 scopus 로고    scopus 로고
    • Theoretical and empirical analysis of reliefF and RReliefF
    • Robnik-Šikonja M, Kononenko I (2003) Theoretical and empirical analysis of reliefF and RReliefF. Mach Learn 53(1-2):23-69
    • (2003) Mach Learn , vol.53 , Issue.1-2 , pp. 23-69
    • Robnik-Šikonja, M.1    Kononenko, I.2
  • 38
    • 33845663518 scopus 로고    scopus 로고
    • Educational data mining: A survey from 1995 to 2005
    • Romero C, Ventura S (2007) Educational data mining: a survey from 1995 to 2005. Expert Syst Appl 33(1):135-146
    • (2007) Expert Syst Appl , vol.33 , Issue.1 , pp. 135-146
    • Romero, C.1    Ventura, S.2
  • 39
    • 77958153220 scopus 로고    scopus 로고
    • Educational data mining: A review of the state-of-The-art
    • Romero C, Ventura S (2010) Educational data mining: a review of the state-of-the-art. IEEE Trans Syst Man Cybernet C Appl Rev 40(6):601-618
    • (2010) IEEE Trans Syst Man Cybernet C Appl Rev , vol.40 , Issue.6 , pp. 601-618
    • Romero, C.1    Ventura, S.2
  • 40
    • 43549125222 scopus 로고    scopus 로고
    • Data mining in course management systems: Moodle case study and tutorial
    • Romero C, Ventura S, García E (2008) Data mining in course management systems: moodle case study and tutorial. Comput Educ 51(1):368-384
    • (2008) Comput Educ , vol.51 , Issue.1 , pp. 368-384
    • Romero, C.1    Ventura, S.2    García, E.3
  • 41
    • 67650245090 scopus 로고    scopus 로고
    • Applying Web usage mining for personalizing hyperlinks in Web-based adaptive educational systems
    • Romero C, Ventura S, Zafra A, de Bra P (2009) Applying Web usage mining for personalizing hyperlinks in Web-based adaptive educational systems. Comput Educ 53:828-840
    • (2009) Comput Educ , vol.53 , pp. 828-840
    • Romero, C.1    Ventura, S.2    Zafra, A.3    De Bra, P.4
  • 44
    • 38849174498 scopus 로고    scopus 로고
    • Adaptive support for distributed collaboration
    • Brusilovsky P, Kobsa A, Nejdl W (eds), 4321 of Lecture Notes in Computer Science. Springer, Berlin
    • Soller A (2007) Adaptive support for distributed collaboration. In: Brusilovsky P, Kobsa A, Nejdl W (eds) The AdaptiveWeb, vol 4321 of Lecture Notes in Computer Science. Springer, Berlin pp 573-595
    • (2007) The AdaptiveWeb , pp. 573-595
    • Soller, A.1
  • 47
    • 60249100506 scopus 로고    scopus 로고
    • Data mining for adaptive learning sequence in english language instruction
    • Wang Y-h, Tseng M-H, Liao H-C (2009) Data mining for adaptive learning sequence in english language instruction. Expert Syst Appl 36:7681-7686
    • (2009) Expert Syst Appl , vol.36 , pp. 7681-7686
    • Wang, Y.-H.1    Tseng, M.-H.2    Liao, H.-C.3
  • 48
    • 0001717058 scopus 로고    scopus 로고
    • Induction of model trees for predicting continuous classes
    • Prague. Prague: university of economics, Faculty of informatics and statistics
    • Wang Y, Witten IH (1997) Induction of model trees for predicting continuous classes, In: Proceedings of the poster papers of the european conference on ML, Prague. Prague: university of economics, Faculty of informatics and statistics, pp 128-137
    • (1997) Proceedings of the Poster Papers of the European Conference on ML , pp. 128-137
    • Wang, Y.1    Witten, I.H.2
  • 49
    • 84871041908 scopus 로고    scopus 로고
    • 3rd Edition, ISBN: 978-0-471-66379-9
    • Weisberg S (2005) Appl Linear Regres, 3rd Edition, ISBN: 978-0-471-66379-9
    • (2005) Appl Linear Regres
    • Weisberg, S.1
  • 50
    • 79955036002 scopus 로고    scopus 로고
    • Mining fuzzy specific rare itemsets for education data
    • doi:10.1016/j.knosys.2011.02.010
    • Weng C-H (2011) Mining fuzzy specific rare itemsets for education data, Knowl-Based Syst. doi:10.1016/j.knosys.2011.02.010
    • (2011) Knowl-Based Syst
    • Weng, C.-H.1
  • 52
    • 84899738659 scopus 로고    scopus 로고
    • A survey on student dropout rates and dropout causes concerning the students in the course of informatics of the Hellenic Open University
    • Xenos M, Pierrakeas C, Pintelas P (2002) A survey on student dropout rates and dropout causes concerning the students in the course of informatics of the Hellenic Open University. Comput Educ 39:361-377
    • (2002) Comput Educ , vol.39 , pp. 361-377
    • Xenos, M.1    Pierrakeas, C.2    Pintelas, P.3
  • 54
    • 67949105158 scopus 로고    scopus 로고
    • Data warehouse technology for e-learning
    • Zakrzewska D et al. (eds)
    • Zorrilla ME (2009) Data Warehouse Technology for E-Learning. In: Zakrzewska D et al. (eds) Meth and Support Tech for Data Analys, SCI 225, pp 1-20
    • (2009) Meth and Support Tech for Data Analys, SCI , vol.225 , pp. 1-20
    • Zorrilla, M.E.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.