메뉴 건너뛰기




Volumn 78, Issue 24, 2012, Pages 8735-8742

Evaluation of a genome-scale in silico metabolic model for geobacter metallireducens by using proteomic data from a field biostimulation experiment

Author keywords

[No Author keywords available]

Indexed keywords

AMINO ACID TRANSPORT; BIOMASS YIELD; BIOSTIMULATION; CARBON MANAGEMENT; CONSTRAINT-BASED; DYNAMIC FIELDS; ENERGY DEVELOPMENT; FIELD EXPERIMENT; GENOME SEQUENCES; GENOME-SCALE METABOLIC MODELS; GENOME-SCALE MODEL; GEOBACTER; GROUNDWATER CLEAN-UP; IN-SILICO; IN-SILICO MODELS; METABOLIC FLUX; METABOLIC MODELS; METABOLIC PROCESS; METABOLIC REACTIONS; METAL REDUCTION; MICROBIAL METABOLISM; MODEL DISCREPANCIES; OR FLUXES; PHYSIOLOGICAL FUNCTIONS; PROTEOMIC ANALYSIS; PROTEOMICS; REACTIVE TRANSPORT MODELS; SUBSURFACE ENVIRONMENT; TERMINAL ELECTRON ACCEPTOR PROCESS;

EID: 84870987046     PISSN: 00992240     EISSN: 10985336     Source Type: Journal    
DOI: 10.1128/AEM.01795-12     Document Type: Article
Times cited : (18)

References (70)
  • 1
    • 77956470482 scopus 로고    scopus 로고
    • The genome of Geobacter bemidjiensis, exemplar for the subsurface clade of Geobacter species that predominate in Fe(III)-reducing subsurface environments
    • doi: 10.1186/ 1471-2164-11-490
    • Aklujkar M, et al. 2010. The genome of Geobacter bemidjiensis, exemplar for the subsurface clade of Geobacter species that predominate in Fe(III)-reducing subsurface environments. BMC Genomics 11:490. doi:10.1186/ 1471-2164-11-490.
    • (2010) BMC Genomics , vol.11 , pp. 490
    • Aklujkar, M.1
  • 2
    • 10744231694 scopus 로고    scopus 로고
    • Stimulating the in situ activity of Geobacter species to remove uranium from the groundwater of a uraniumcontaminated aquifer
    • Anderson RT, et al. 2003. Stimulating the in situ activity of Geobacter species to remove uranium from the groundwater of a uraniumcontaminated aquifer. Appl. Environ. Microbiol. 69:5884-5891.
    • (2003) Appl. Environ. Microbiol. , vol.69 , pp. 5884-5891
    • Anderson, R.T.1
  • 3
    • 78649697373 scopus 로고    scopus 로고
    • Particular application of a mathematical transport model incorporating sub-surface reactive pollutants
    • Aniszewski A. 2011. Particular application of a mathematical transport model incorporating sub-surface reactive pollutants. Acta Geophys. 59: 110-123.
    • (2011) Acta Geophys , vol.59 , pp. 110-123
    • Aniszewski, A.1
  • 4
    • 33846878014 scopus 로고    scopus 로고
    • Monitoring of microbial diversity and activity during bioremediation of crude OH-contaminated soil with different treatments
    • Baek KH, et al. 2007. Monitoring of microbial diversity and activity during bioremediation of crude OH-contaminated soil with different treatments. J. Microbiol. Biotechnol. 17:67-73.
    • (2007) J. Microbiol. Biotechnol. , vol.17 , pp. 67-73
    • Baek, K.H.1
  • 5
    • 33645215770 scopus 로고    scopus 로고
    • Signal transduction in bacterial chemotaxis
    • Baker MD, Wolanin PM, Stock JB. 2006. Signal transduction in bacterial chemotaxis. Bioessays 28:9-22.
    • (2006) Bioessays , vol.28 , pp. 9-22
    • Baker, M.D.1    Wolanin, P.M.2    Stock, J.B.3
  • 7
    • 77952886902 scopus 로고    scopus 로고
    • Microbial enhanced oil recovery (MEOR)
    • Brown LR. 2010. Microbial enhanced oil recovery (MEOR). Curr. Opin. Microbiol. 13:316-320.
    • (2010) Curr. Opin. Microbiol. , vol.13 , pp. 316-320
    • Brown, L.R.1
  • 8
    • 32344442813 scopus 로고    scopus 로고
    • Normalization approaches for removing systematic biases associated with mass spectrometry and label-free proteomics
    • Callister SJ, et al. 2006. Normalization approaches for removing systematic biases associated with mass spectrometry and label-free proteomics. J. Proteome Res. 5:277-286.
    • (2006) J. Proteome Res. , vol.5 , pp. 277-286
    • Callister, S.J.1
  • 9
    • 78650267487 scopus 로고    scopus 로고
    • Analysis of biostimulated microbial communities from two field experiments reveals temporal and spatial differences in proteome profiles
    • Callister SJ, et al. 2010. Analysis of biostimulated microbial communities from two field experiments reveals temporal and spatial differences in proteome profiles. Environ. Sci. Technol. 44:8897-8903.
    • (2010) Environ. Sci. Technol. , vol.44 , pp. 8897-8903
    • Callister, S.J.1
  • 10
    • 76049084477 scopus 로고    scopus 로고
    • Modeling multi-component transport and enhanced anaerobic dechlorination processes in a single fracture-clay matrix system
    • Chambon JC, Broholm MM, Binning PJ, Bjerg PL. 2010. Modeling multi-component transport and enhanced anaerobic dechlorination processes in a single fracture-clay matrix system. J. Contam. Hydrol. 112:77-90.
    • (2010) J. Contam. Hydrol. , vol.112 , pp. 77-90
    • Chambon, J.C.1    Broholm, M.M.2    Binning, P.J.3    Bjerg, P.L.4
  • 11
    • 77954573284 scopus 로고    scopus 로고
    • Monitoring microbial community structure and dynamics during in situ U(VI) bioremediation with a field-portable microarray analysis system
    • Chandler DP, et al. 2010. Monitoring microbial community structure and dynamics during in situ U(VI) bioremediation with a field-portable microarray analysis system. Environ. Sci. Technol. 44:5516-5522.
    • (2010) Environ. Sci. Technol. , vol.44 , pp. 5516-5522
    • Chandler, D.P.1
  • 12
    • 28444466192 scopus 로고    scopus 로고
    • Microbial incorporation of C-13-labeled acetate at the field scale: detection of microbes responsible for reduction of U(VI)
    • Chang YJ, et al. 2005. Microbial incorporation of C-13-labeled acetate at the field scale: detection of microbes responsible for reduction of U(VI). Environ. Sci. Technol. 39:9039-9048.
    • (2005) Environ. Sci. Technol. , vol.39 , pp. 9039-9048
    • Chang, Y.J.1
  • 13
    • 77954040575 scopus 로고    scopus 로고
    • Genome-scale metabolic reconstruction and in silico analysis of methylotrophic yeast Pichia pastoris for strain improvement
    • Chung BKS, et al. 2010. Genome-scale metabolic reconstruction and in silico analysis of methylotrophic yeast Pichia pastoris for strain improvement. Microb. Cell Fact. 9:50.
    • (2010) Microb. Cell Fact. , vol.9 , pp. 50
    • Chung, B.K.S.1
  • 14
    • 70049110173 scopus 로고    scopus 로고
    • Interpreting expression data with metabolic flux models: predicting Mycobacterium tuberculosis mycolic acid production
    • doi: 10.1371/journal.pcbi.1000489
    • Colijin C, et al. 2009. Interpreting expression data with metabolic flux models: predicting Mycobacterium tuberculosis mycolic acid production. PLoS Comput. Biol. 5:e1000489. doi:10.1371/journal.pcbi.1000489.
    • (2009) PLoS Comput. Biol. , vol.5
    • Colijin, C.1
  • 15
    • 57549102595 scopus 로고    scopus 로고
    • Genome-scale models of bacterial metabolism: reconstruction and applications
    • Durot M, Bourguignon PY, Schachter V. 2009. Genome-scale models of bacterial metabolism: reconstruction and applications. FEMS Microbiol. Rev. 33:164-190.
    • (2009) FEMS Microbiol. Rev. , vol.33 , pp. 164-190
    • Durot, M.1    Bourguignon, P.Y.2    Schachter, V.3
  • 16
    • 0036001069 scopus 로고    scopus 로고
    • Metabolic modeling of microbes: the flux-balance approach
    • Edwards JS, Covert M, Palsson B. 2002. Metabolic modeling of microbes: the flux-balance approach. Environ. Microbiol. 4:133-140.
    • (2002) Environ. Microbiol. , vol.4 , pp. 133-140
    • Edwards, J.S.1    Covert, M.2    Palsson, B.3
  • 17
    • 79951949741 scopus 로고    scopus 로고
    • Direct coupling of a genome-scale microbial in silico model and a groundwater reactive transport model
    • Fang YL, et al. 2011. Direct coupling of a genome-scale microbial in silico model and a groundwater reactive transport model. J. Contam. Hydrol. 122:96-103.
    • (2011) J. Contam. Hydrol. , vol.122 , pp. 96-103
    • Fang, Y.L.1
  • 19
    • 0036276689 scopus 로고    scopus 로고
    • Potential for bioremediation of uranium-contaminated aquifers with microbial U(VI) reduction
    • Finneran KT, Anderson RT, Nevin KP, Lovley DR. 2002. Potential for bioremediation of uranium-contaminated aquifers with microbial U(VI) reduction. Soil Sediment Contam. 11:339-357.
    • (2002) Soil Sediment Contam , vol.11 , pp. 339-357
    • Finneran, K.T.1    Anderson, R.T.2    Nevin, K.P.3    Lovley, D.R.4
  • 20
    • 33750861207 scopus 로고    scopus 로고
    • Modeling seasonal redox dynamics and the corresponding fate of the pharmaceutical residue phenazone during artificial recharge of groundwater
    • Greskowiak J, Prommer H, Massmann G, Nutzmann G. 2006. Modeling seasonal redox dynamics and the corresponding fate of the pharmaceutical residue phenazone during artificial recharge of groundwater. Environ. Sci. Technol. 40:6615-6621.
    • (2006) Environ. Sci. Technol. , vol.40 , pp. 6615-6621
    • Greskowiak, J.1    Prommer, H.2    Massmann, G.3    Nutzmann, G.4
  • 21
    • 0036249528 scopus 로고    scopus 로고
    • Enrichment of members of the family Geobacteraceae associated with stimulation of dissimilatory metal reduction in uranium-contaminated aquifer sediments
    • Holmes DE, Finneran KT, O'Neill RA, Lovley DR. 2002. Enrichment of members of the family Geobacteraceae associated with stimulation of dissimilatory metal reduction in uranium-contaminated aquifer sediments. Appl. Environ. Microbiol. 68:2300-2306.
    • (2002) Appl. Environ. Microbiol. , vol.68 , pp. 2300-2306
    • Holmes, D.E.1    Finneran, K.T.2    O'Neill, R.A.3    Lovley, D.R.4
  • 22
    • 58549102477 scopus 로고    scopus 로고
    • Transcriptome of Geobacter uraniireducens growing in uranium-contaminated subsurface sediments
    • Holmes DE, et al. 2008. Transcriptome of Geobacter uraniireducens growing in uranium-contaminated subsurface sediments. ISME J. 3:216-230.
    • (2008) ISME J , vol.3 , pp. 216-230
    • Holmes, D.E.1
  • 23
    • 10444268971 scopus 로고    scopus 로고
    • In situ expression of nifD in Geobacteraceae in subsurface sediments
    • Holmes DE, Nevin KP, Lovley DR. 2004. In situ expression of nifD in Geobacteraceae in subsurface sediments. Appl. Environ. Microbiol. 70: 7251-7259.
    • (2004) Appl. Environ. Microbiol. , vol.70 , pp. 7251-7259
    • Holmes, D.E.1    Nevin, K.P.2    Lovley, D.R.3
  • 24
    • 0032144374 scopus 로고    scopus 로고
    • Kinetic modeling of microbially driven redox chemistry of subsurface environments: coupling transport, microbial metabolism and geochemistry
    • Hunter KS, Wang YF, Van Cappellen P. 1998. Kinetic modeling of microbially driven redox chemistry of subsurface environments: coupling transport, microbial metabolism and geochemistry. J. Hydrol. 209:53-80.
    • (1998) J. Hydrol. , vol.209 , pp. 53-80
    • Hunter, K.S.1    Wang, Y.F.2    Van Cappellen, P.3
  • 26
    • 84860701491 scopus 로고    scopus 로고
    • Ex situ bioremediation of soil polluted with oily waste: the use of specialized microbial consortia for process bioaugmentation
    • Kaszycki P, Petryszak P, Pawlike M, Koloczek H. 2011. Ex situ bioremediation of soil polluted with oily waste: the use of specialized microbial consortia for process bioaugmentation. Ecol. Chem. Eng. S 18:83-92.
    • (2011) Ecol. Chem. Eng. S , vol.18 , pp. 83-92
    • Kaszycki, P.1    Petryszak, P.2    Pawlike, M.3    Koloczek, H.4
  • 28
    • 79951634614 scopus 로고    scopus 로고
    • Phase preference by active, acetate-utilizing bacteria at the Rifle CO Integrated Field Research Challenge site
    • Kerkof LJ, Williams KH, Long PE, McGuinness LR. 2011. Phase preference by active, acetate-utilizing bacteria at the Rifle, CO Integrated Field Research Challenge site. Environ. Sci. Technol. 45:1250-1256.
    • (2011) Environ. Sci. Technol. , vol.45 , pp. 1250-1256
    • Kerkof, L.J.1    Williams, K.H.2    Long, P.E.3    McGuinness, L.R.4
  • 29
    • 58149347795 scopus 로고    scopus 로고
    • In silico Geobacter sulfurreducens metabolism and its representation in reactive transport models
    • King EL, Tuncay K, Ortoleva P, Meile C. 2009. In silico Geobacter sulfurreducens metabolism and its representation in reactive transport models. Appl. Environ. Microbiol. 75:83-92.
    • (2009) Appl. Environ. Microbiol. , vol.75 , pp. 83-92
    • King, E.L.1    Tuncay, K.2    Ortoleva, P.3    Meile, C.4
  • 30
    • 58249089508 scopus 로고    scopus 로고
    • In silico genome-scale reconstruction and validation of the Corynebacterium glutamicum metabolic network
    • Kjeldsen KR, Nielsen J. 2009. In silico genome-scale reconstruction and validation of the Corynebacterium glutamicum metabolic network. Biotechnol. Bioeng. 102:583-597.
    • (2009) Biotechnol. Bioeng. , vol.102 , pp. 583-597
    • Kjeldsen, K.R.1    Nielsen, J.2
  • 31
    • 0021578408 scopus 로고
    • Overview of microbial enhanced oil recovery
    • Knabe S. 1984. Overview of microbial enhanced oil recovery. Oil Gas J. 82:59-60.
    • (1984) Oil Gas J , vol.82 , pp. 59-60
    • Knabe, S.1
  • 32
    • 80052642111 scopus 로고    scopus 로고
    • Functional adaptation of microbial communities from jet fuel-contaminated soil under bioremediation treatment: simulation of pollutant rebound
    • Korotkevych O, et al. 2011. Functional adaptation of microbial communities from jet fuel-contaminated soil under bioremediation treatment: simulation of pollutant rebound. FEMS Microbiol. Ecol. 78:137-149.
    • (2011) FEMS Microbiol. Ecol. , vol.78 , pp. 137-149
    • Korotkevych, O.1
  • 33
    • 51849115840 scopus 로고    scopus 로고
    • Genome-scale reconstruction and in silico analysis of the Clostridium acetobutylicum ATCC 824 metabolic network
    • Lee J, Yun H, Feist AM, Palsson BO, Lee SY. 2008. Genome-scale reconstruction and in silico analysis of the Clostridium acetobutylicum ATCC 824 metabolic network. Appl. Microbiol. Biotechnol. 80:849-862.
    • (2008) Appl. Microbiol. Biotechnol. , vol.80 , pp. 849-862
    • Lee, J.1    Yun, H.2    Feist, A.M.3    Palsson, B.O.4    Lee, S.Y.5
  • 34
    • 77955141026 scopus 로고    scopus 로고
    • Omic data from evolved E-coli are consistent with computed optimal growth from genome-scale models
    • Lewis NE, et al. 2010. Omic data from evolved E-coli are consistent with computed optimal growth from genome-scale models. Mol. Syst. Biol. 6:390.
    • (2010) Mol. Syst. Biol. , vol.6 , pp. 390
    • Lewis, N.E.1
  • 35
    • 79952446157 scopus 로고    scopus 로고
    • Interactions of microbial-enhanced oil recovery processes
    • Li JA, et al. 2011. Interactions of microbial-enhanced oil recovery processes. Transport Porous Media 87:77-104.
    • (2011) Transport Porous Media , vol.87 , pp. 77-104
    • Li, J.A.1
  • 36
    • 76049108313 scopus 로고    scopus 로고
    • Effects of physical and geochemical heterogeneities on mineral transformation and biomass accumulation during biostimulation experiments at Rifle Colorado
    • Li L, Steefel CI, Kowalsky MB, Englert A, Hubbard SS. 2010. Effects of physical and geochemical heterogeneities on mineral transformation and biomass accumulation during biostimulation experiments at Rifle, Colorado. J. Contam. Hydrol. 112:45-63.
    • (2010) J. Contam. Hydrol. , vol.112 , pp. 45-63
    • Li, L.1    Steefel, C.I.2    Kowalsky, M.B.3    Englert, A.4    Hubbard, S.S.5
  • 38
    • 0035478586 scopus 로고    scopus 로고
    • The Virtual Cell: a software environment for computational cell biology
    • Loew LM, Schaff JC. 2001. The Virtual Cell: a software environment for computational cell biology. Trends Biotechnol. 19:401-406.
    • (2001) Trends Biotechnol , vol.19 , pp. 401-406
    • Loew, L.M.1    Schaff, J.C.2
  • 39
    • 33144470047 scopus 로고    scopus 로고
    • Characterization of metabolism in the Fe(III)-reducing organism Geobacter sulfurreducens by constraint-based modeling
    • Mahadevan R, et al. 2006. Characterization of metabolism in the Fe(III)-reducing organism Geobacter sulfurreducens by constraint-based modeling. Appl. Environ. Microbiol. 72:1558-1568.
    • (2006) Appl. Environ. Microbiol. , vol.72 , pp. 1558-1568
    • Mahadevan, R.1
  • 40
    • 40349089020 scopus 로고    scopus 로고
    • Characterizing regulation of metabolism in Geobacter sulfurreducens through genome-wide expression data and sequence analysis
    • Mahadevan R, et al. 2008. Characterizing regulation of metabolism in Geobacter sulfurreducens through genome-wide expression data and sequence analysis. OMICS 12:33-59.
    • (2008) OMICS , vol.12 , pp. 33-59
    • Mahadevan, R.1
  • 41
    • 0036761040 scopus 로고    scopus 로고
    • Multicomponent reactive transport modeling in variably saturated porous media using a generalized formulation for kinetically controlled reactions
    • Mayer KU, Frind EO, Blowes DW. 2002. Multicomponent reactive transport modeling in variably saturated porous media using a generalized formulation for kinetically controlled reactions. Water Resour. Res. 38:1174.
    • (2002) Water Resour. Res. , vol.38 , pp. 1174
    • Mayer, K.U.1    Frind, E.O.2    Blowes, D.W.3
  • 42
    • 0011183406 scopus 로고
    • Bioremediation of petroleum contaminated soils using a microbial consortia as inoculums
    • Calabrese EJ, Kostecki PT (ed), Lewis Publishers, Chelsea, MI
    • Molnaa BA, Grubbs RB. 1989. Bioremediation of petroleum contaminated soils using a microbial consortia as inoculums, p 219-232. In Calabrese EJ, Kostecki PT (ed), Petroleum contaminated soils, vol 2. Lewis Publishers, Chelsea, MI.
    • (1989) Petroleum contaminated soils , vol.2 , pp. 219-232
    • Molnaa, B.A.1    Grubbs, R.B.2
  • 43
    • 67449110763 scopus 로고    scopus 로고
    • Influence of heterogeneous ammonium availability on bacterial community structure and the expression of nitrogen fixation and ammonium transporter genes during in situ bioremediation of uraniumcontaminated groundwater
    • Mouser PJ, et al. 2009. Influence of heterogeneous ammonium availability on bacterial community structure and the expression of nitrogen fixation and ammonium transporter genes during in situ bioremediation of uraniumcontaminated groundwater. Environ. Sci. Technol. 43:4386-4392.
    • (2009) Environ. Sci. Technol. , vol.43 , pp. 4386-4392
    • Mouser, P.J.1
  • 45
    • 46249116675 scopus 로고    scopus 로고
    • DAnTE: a statistical tool for quantitative analysis of -omics data
    • Polpitiya AD, et al. 2008. DAnTE: a statistical tool for quantitative analysis of -omics data. Bioinformatics 24:1556-1558.
    • (2008) Bioinformatics , vol.24 , pp. 1556-1558
    • Polpitiya, A.D.1
  • 46
    • 0037385718 scopus 로고    scopus 로고
    • Genome-scale microbial in silico models: the constraints-based approach
    • Price ND, Papin JA, Schilling CH, Palsson BO. 2003. Genome-scale microbial in silico models: the constraints-based approach. Trends Biotechnol. 21:162-169.
    • (2003) Trends Biotechnol , vol.21 , pp. 162-169
    • Price, N.D.1    Papin, J.A.2    Schilling, C.H.3    Palsson, B.O.4
  • 47
    • 0344328817 scopus 로고    scopus 로고
    • An expanded genomescale model of Escherichia coli K-12 (iJR904 GSM/GPR)
    • Reed JL, Vo TD, Schilling CH, Palsson BO. 2003. An expanded genomescale model of Escherichia coli K-12 (iJR904 GSM/GPR). Genome Biol. 4:R54.
    • (2003) Genome Biol , vol.4
    • Reed, J.L.1    Vo, T.D.2    Schilling, C.H.3    Palsson, B.O.4
  • 48
    • 84864377231 scopus 로고    scopus 로고
    • Modeling microbial dynamics in heterogeneous environments: growth on soil carbon sources
    • doi: 10.1007/s00248-011-9965-x
    • Resat H, Bailey V, McCue LA, Konopka A. 2011. Modeling microbial dynamics in heterogeneous environments: growth on soil carbon sources. Microb. Ecol. 63:883-897. doi:10.1007/s00248-011-9965-x.
    • (2011) Microb. Ecol. , vol.63 , pp. 883-897
    • Resat, H.1    Bailey, V.2    McCue, L.A.3    Konopka, A.4
  • 49
    • 77953179929 scopus 로고    scopus 로고
    • Microbial communities involved in the bioremediation of an aged recalcitrant hydrocarbon polluted soil by using organic amendments
    • Ros M, Rodriguez I, Garcia C, Hernandez T. 2010. Microbial communities involved in the bioremediation of an aged recalcitrant hydrocarbon polluted soil by using organic amendments. Bioresour. Technol. 101: 6916-6923.
    • (2010) Bioresour. Technol. , vol.101 , pp. 6916-6923
    • Ros, M.1    Rodriguez, I.2    Garcia, C.3    Hernandez, T.4
  • 51
    • 0242554003 scopus 로고    scopus 로고
    • Simulation of reactive processes related to biodegradation in aquifers: 1. Structure of the threedimensional reactive transport model
    • Schafer D, Schafer W, Kinzelbach W. 1998. Simulation of reactive processes related to biodegradation in aquifers: 1. Structure of the threedimensional reactive transport model. J. Contam. Hydrol. 31:167-186.
    • (1998) J. Contam. Hydrol. , vol.31 , pp. 167-186
    • Schafer, D.1    Schafer, W.2    Kinzelbach, W.3
  • 52
    • 69849084132 scopus 로고    scopus 로고
    • Coupling a genome-scale metabolic model with a reactive transport model to describe in situ uranium bioremediation
    • Scheibe TD, et al. 2009. Coupling a genome-scale metabolic model with a reactive transport model to describe in situ uranium bioremediation. Microb. Biotechnol. 2:274-286.
    • (2009) Microb. Biotechnol. , vol.2 , pp. 274-286
    • Scheibe, T.D.1
  • 53
    • 71949101174 scopus 로고    scopus 로고
    • Microbial transformation of xenobiotics for environmental bioremediation
    • Sinha S, et al. 2009. Microbial transformation of xenobiotics for environmental bioremediation. Afr. J. Biotechnol. 8:6016-6027.
    • (2009) Afr. J. Biotechnol. , vol.8 , pp. 6016-6027
    • Sinha, S.1
  • 54
    • 60849099919 scopus 로고    scopus 로고
    • Genome-scale constraint-based modeling of Geobacter metallireducens
    • doi: 10.1186/1752-0509-3-15
    • Sun J, et al. 2009. Genome-scale constraint-based modeling of Geobacter metallireducens. BMC Syst. Biol. 3:15. doi:10.1186/1752-0509-3-15.
    • (2009) BMC Syst. Biol. , vol.3 , pp. 15
    • Sun, J.1
  • 56
    • 63549148162 scopus 로고    scopus 로고
    • Genome-scale reconstruction of Escherichia coli's transcriptional and translational machinery: a knowledge base, its mathematical formulation, and its functional characterization
    • doi: 10.1371/journal.pcbi.1000312
    • Thiele I, Jamshidi N, Fleming RMT, Palsson BO. 2009. Genome-scale reconstruction of Escherichia coli's transcriptional and translational machinery: a knowledge base, its mathematical formulation, and its functional characterization. PLoS Comput. Biol. 5:e1000312. doi:10.1371/journal.pcbi.1000312.
    • (2009) PLoS Comput. Biol. , vol.5
    • Thiele, I.1    Jamshidi, N.2    Fleming, R.M.T.3    Palsson, B.O.4
  • 57
    • 23644452487 scopus 로고    scopus 로고
    • Expanded metabolic reconstruction of Helicobacter pylori (iIT341 GSM/GPR): an in silico genome-scale characterization of single- and double-deletion mutants
    • Thiele I, Vo TD, Price ND, Palsson BO. 2005. Expanded metabolic reconstruction of Helicobacter pylori (iIT341 GSM/GPR): an in silico genome-scale characterization of single- and double-deletion mutants. J. Bacteriol. 187:5818-5830.
    • (2005) J. Bacteriol. , vol.187 , pp. 5818-5830
    • Thiele, I.1    Vo, T.D.2    Price, N.D.3    Palsson, B.O.4
  • 58
    • 28344447154 scopus 로고    scopus 로고
    • Modeling the impact of microbial activity on redox dynamics in porous media
    • Thullner M, Van Cappellen P, Regnier P. 2005. Modeling the impact of microbial activity on redox dynamics in porous media. Geochim. Cosmochim. Acta 69:5005-5019.
    • (2005) Geochim. Cosmochim. Acta , vol.69 , pp. 5005-5019
    • Thullner, M.1    Van Cappellen, P.2    Regnier, P.3
  • 59
    • 34250829079 scopus 로고    scopus 로고
    • Flux analysis of central metabolic pathways in Geobacter metallireducens during reduction of soluble Fe(III)-nitrilotriacetic acid
    • Tang YJ, et al. 2007. Flux analysis of central metabolic pathways in Geobacter metallireducens during reduction of soluble Fe(III)-nitrilotriacetic acid. Appl. Environ. Microbiol. 73:3859-3864.
    • (2007) Appl. Environ. Microbiol. , vol.73 , pp. 3859-3864
    • Tang, Y.J.1
  • 60
    • 0028108519 scopus 로고
    • Metabolic flux balancing: basic concepts, scientific and practical use
    • Varma A, Palsson BO. 1994. Metabolic flux balancing: basic concepts, scientific and practical use. Nat. Biotechnol. 12:994-998.
    • (1994) Nat. Biotechnol. , vol.12 , pp. 994-998
    • Varma, A.1    Palsson, B.O.2
  • 61
    • 26844471341 scopus 로고    scopus 로고
    • Microbiological and geochemical heterogeneity in an in situ uranium bioremediation field site
    • Vrionis HA, et al. 2005. Microbiological and geochemical heterogeneity in an in situ uranium bioremediation field site. Appl. Environ. Microbiol. 71:6308-6318.
    • (2005) Appl. Environ. Microbiol. , vol.71 , pp. 6308-6318
    • Vrionis, H.A.1
  • 62
    • 78751658356 scopus 로고    scopus 로고
    • Genome-scale modeling and in silico analysis of ethanologenic bacteria Zymomonas mobilis
    • Widiastuti H, et al. 2011. Genome-scale modeling and in silico analysis of ethanologenic bacteria Zymomonas mobilis. Biotechnol. Bioeng. 108:655-665.
    • (2011) Biotechnol. Bioeng. , vol.108 , pp. 655-665
    • Widiastuti, H.1
  • 63
    • 70349932972 scopus 로고    scopus 로고
    • Proteogenomic monitoring of Geobacter physiology during stimulated uranium bioremediation
    • Wilkins MJ, et al. 2009. Proteogenomic monitoring of Geobacter physiology during stimulated uranium bioremediation. Appl. Environ. Microbiol. 75:6591-6599.
    • (2009) Appl. Environ. Microbiol. , vol.75 , pp. 6591-6599
    • Wilkins, M.J.1
  • 64
    • 79956110173 scopus 로고    scopus 로고
    • Acetate availability and its influence on sustainable bioremediation of uranium-contaminated groundwater
    • Williams KH, et al. 2011. Acetate availability and its influence on sustainable bioremediation of uranium-contaminated groundwater. Geomicrobiol. J. 28:519-539.
    • (2011) Geomicrobiol. J. , vol.28 , pp. 519-539
    • Williams, K.H.1
  • 65
    • 3242768934 scopus 로고    scopus 로고
    • Microbial degradation and enhanced bioremediation of polycyclic aromatic hydrocarbons
    • Woo SH, Park JM. 2004. Microbial degradation and enhanced bioremediation of polycyclic aromatic hydrocarbons. J. Ind. Eng. Chem. 10:16-23.
    • (2004) J. Ind. Eng. Chem. , vol.10 , pp. 16-23
    • Woo, S.H.1    Park, J.M.2
  • 66
    • 34447634710 scopus 로고    scopus 로고
    • Uranium removal from groundwater via in situ biostimulation: field-scale modeling of transport and biological processes
    • Yabusaki SB, et al. 2007. Uranium removal from groundwater via in situ biostimulation: field-scale modeling of transport and biological processes. J. Contam. Hydrol. 93:216-235.
    • (2007) J. Contam. Hydrol. , vol.93 , pp. 216-235
    • Yabusaki, S.B.1
  • 67
    • 80155155889 scopus 로고    scopus 로고
    • Variably saturated flow and multicomponent biogeochemical reactive transport modeling of a uranium bioremediation field experiment
    • Yabusaki SB, et al. 2011. Variably saturated flow and multicomponent biogeochemical reactive transport modeling of a uranium bioremediation field experiment. J. Contam. Hydrol. 126:271-290.
    • (2011) J. Contam. Hydrol. , vol.126 , pp. 271-290
    • Yabusaki, S.B.1
  • 68
    • 77952882944 scopus 로고    scopus 로고
    • Numerical modeling of coupled fluid flow and thermal and reactive biogeochemical transport in porous and fractured media
    • Yeh GT, et al. 2010. Numerical modeling of coupled fluid flow and thermal and reactive biogeochemical transport in porous and fractured media. Comput. Geosci. 14:147-170.
    • (2010) Comput. Geosci. , vol.14 , pp. 147-170
    • Yeh, G.T.1
  • 69
    • 77954197778 scopus 로고    scopus 로고
    • Integrating quantitative proteomics and metabolomics with a genomescale metabolic network model
    • Yizhak K, Benyamini T, Liebermeister W, Ruppin E, Shlomi T. 2010. Integrating quantitative proteomics and metabolomics with a genomescale metabolic network model. Bioinformatics 26:i255-i260.
    • (2010) Bioinformatics , vol.26
    • Yizhak, K.1    Benyamini, T.2    Liebermeister, W.3    Ruppin, E.4    Shlomi, T.5
  • 70
    • 78751584992 scopus 로고    scopus 로고
    • Genome-scale dynamic modeling of the competition between Rhodoferax and Geobacter in anoxic subsurface environments
    • Zhuang K, et al. 2011. Genome-scale dynamic modeling of the competition between Rhodoferax and Geobacter in anoxic subsurface environments. ISME J. 5:305-316.
    • (2011) ISME J , vol.5 , pp. 305-316
    • Zhuang, K.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.