메뉴 건너뛰기




Volumn 18, Issue , 2013, Pages 20-28

Nanomechanical measurements of polyethylene glycol hydrogels using atomic force microscopy

Author keywords

Hydrogel; Nanoindentation; Poly(ethylene glycol); Young's modulus

Indexed keywords

AFM; ARTICULAR CARTILAGES; ATOMIC FORCE MICROSCOPE (AFM); BIOMEDICAL APPLICATIONS; CELLULAR INTERACTION; CRITICAL PARAMETER; HIGH-THROUGHPUT; INITIATOR CONCENTRATION; MATERIAL PROPERTY; MECHANICAL CHARACTERISTICS; NANO SCALE; NANOMECHANICAL MEASUREMENTS; NON-DESTRUCTIVE MEASUREMENT; PEG HYDROGEL; POLYETHYLENE GLYCOL DIACRYLATE; POLYMER CHAIN LENGTH; SYNTHETIC POLYMERS; VARYING PARAMETERS; YOUNG'S MODULUS;

EID: 84870904413     PISSN: 17516161     EISSN: 18780180     Source Type: Journal    
DOI: 10.1016/j.jmbbm.2012.09.015     Document Type: Article
Times cited : (64)

References (55)
  • 1
    • 33747147839 scopus 로고    scopus 로고
    • Characterizing the viscoelastic properties of thin hydrogel-based constructs for tissue engineering applications
    • Ahearne M., et al. Characterizing the viscoelastic properties of thin hydrogel-based constructs for tissue engineering applications. Journal of the Royal Society Interface 2005, 2:455-463.
    • (2005) Journal of the Royal Society Interface , vol.2 , pp. 455-463
    • Ahearne, M.1
  • 2
    • 0030246883 scopus 로고    scopus 로고
    • Mechanical properties of hydrogels and their experimental determination
    • Anseth K.S., et al. Mechanical properties of hydrogels and their experimental determination. Biomaterials 1996, 17:1647-1657.
    • (1996) Biomaterials , vol.17 , pp. 1647-1657
    • Anseth, K.S.1
  • 3
    • 33749557616 scopus 로고    scopus 로고
    • Rational design of hydrogels for tissue engineering: Impact of physical factors on cell behavior
    • Brandl F., et al. Rational design of hydrogels for tissue engineering: Impact of physical factors on cell behavior. Biomaterials 2007, 28:134-146.
    • (2007) Biomaterials , vol.28 , pp. 134-146
    • Brandl, F.1
  • 5
    • 27744587245 scopus 로고    scopus 로고
    • Force measurements with the atomic force microscope: technique, interpretation and applications
    • Butt H.J., et al. Force measurements with the atomic force microscope: technique, interpretation and applications. Surface Science Reports 2005, 59:1-152.
    • (2005) Surface Science Reports , vol.59 , pp. 1-152
    • Butt, H.J.1
  • 7
    • 58149305673 scopus 로고    scopus 로고
    • AFM nanoindentation: tip shape and tip radius of curvature effect on the hardness measurement
    • Calabri L., et al. AFM nanoindentation: tip shape and tip radius of curvature effect on the hardness measurement. Journal of Physics: Condensed Matter 2008, 20.
    • (2008) Journal of Physics: Condensed Matter , vol.20
    • Calabri, L.1
  • 8
    • 0033153911 scopus 로고    scopus 로고
    • Force-distance curves by atomic force microscopy
    • Cappella B., Dietler G. Force-distance curves by atomic force microscopy. Surface Science Reports 1999, 34:1-104.
    • (1999) Surface Science Reports , vol.34 , pp. 1-104
    • Cappella, B.1    Dietler, G.2
  • 9
    • 55549122299 scopus 로고    scopus 로고
    • Probing mechanical properties of fully hydrated gels and biological tissues
    • Constantinides G., et al. Probing mechanical properties of fully hydrated gels and biological tissues. Journal of Biomechanics 2008, 41:3285-3289.
    • (2008) Journal of Biomechanics , vol.41 , pp. 3285-3289
    • Constantinides, G.1
  • 10
    • 27944497333 scopus 로고    scopus 로고
    • Tissue cells feel and respond to the stiffness of their substrate
    • Discher D.E., et al. Tissue cells feel and respond to the stiffness of their substrate. Science 2005, 310:1139-1143.
    • (2005) Science , vol.310 , pp. 1139-1143
    • Discher, D.E.1
  • 11
    • 0042061223 scopus 로고    scopus 로고
    • Hydrogels for tissue engineering: scaffold design variables and applications
    • Drury J.L., Mooney D.J. Hydrogels for tissue engineering: scaffold design variables and applications. Biomaterials 2003, 24:4337-4351.
    • (2003) Biomaterials , vol.24 , pp. 4337-4351
    • Drury, J.L.1    Mooney, D.J.2
  • 12
    • 1842780858 scopus 로고    scopus 로고
    • Nanoindentation of soft hydrated materials for application to vascular tissues
    • Ebenstein D.M., Pruitt L.A. Nanoindentation of soft hydrated materials for application to vascular tissues. Journal of Biomedical Materials Research 2004, 69A:222-232.
    • (2004) Journal of Biomedical Materials Research , vol.69 A , pp. 222-232
    • Ebenstein, D.M.1    Pruitt, L.A.2
  • 13
    • 33745951194 scopus 로고    scopus 로고
    • Nanoindentation of biological materials
    • Ebenstein D.M., Pruitt L.A. Nanoindentation of biological materials. Nano Today 2006, 1:26-33.
    • (2006) Nano Today , vol.1 , pp. 26-33
    • Ebenstein, D.M.1    Pruitt, L.A.2
  • 14
    • 34548541622 scopus 로고    scopus 로고
    • Mechanical properties of hyaline and repair cartilage studied by nanoindentation
    • Franke O., et al. Mechanical properties of hyaline and repair cartilage studied by nanoindentation. Acta Biomaterialia 2007, 3:873-881.
    • (2007) Acta Biomaterialia , vol.3 , pp. 873-881
    • Franke, O.1
  • 15
    • 0242654874 scopus 로고    scopus 로고
    • Application of nanoindentation to development of biomedical materials
    • Haque F. Application of nanoindentation to development of biomedical materials. Surface Engineering 2003, 19:255-268.
    • (2003) Surface Engineering , vol.19 , pp. 255-268
    • Haque, F.1
  • 16
    • 0345818180 scopus 로고    scopus 로고
    • Photo-cross-linkable PNIPAAm copolymers. 5. Mechanical properties of hydrogel layers
    • Harmon M.E., et al. Photo-cross-linkable PNIPAAm copolymers. 5. Mechanical properties of hydrogel layers. Langmuir 2003, 19:10660-10665.
    • (2003) Langmuir , vol.19 , pp. 10660-10665
    • Harmon, M.E.1
  • 18
    • 0036138301 scopus 로고    scopus 로고
    • Nanoindentation discriminates the elastic properties of individual human bone lamellae under dry and physiological conditions
    • Hengsberger S., et al. Nanoindentation discriminates the elastic properties of individual human bone lamellae under dry and physiological conditions. Bone 2002, 30:178-184.
    • (2002) Bone , vol.30 , pp. 178-184
    • Hengsberger, S.1
  • 20
    • 68849104748 scopus 로고    scopus 로고
    • Hydrogels cross-linked by native chemical ligation
    • Hu B.H., et al. Hydrogels cross-linked by native chemical ligation. Biomacromolecules 2009, 10:2194-2200.
    • (2009) Biomacromolecules , vol.10 , pp. 2194-2200
    • Hu, B.H.1
  • 21
    • 84862939039 scopus 로고    scopus 로고
    • Indentation: a simple, nondestructive method for characterizing the mechanical and transport properties of pH-sensitive hydrogels
    • Hu Y.H., et al. Indentation: a simple, nondestructive method for characterizing the mechanical and transport properties of pH-sensitive hydrogels. Journal of Materials Research 2012, 27:152-160.
    • (2012) Journal of Materials Research , vol.27 , pp. 152-160
    • Hu, Y.H.1
  • 22
    • 0032473522 scopus 로고    scopus 로고
    • Hydrogels of poly(ethylene glycol): mechanical characterization and release of a model drug
    • Iza M., et al. Hydrogels of poly(ethylene glycol): mechanical characterization and release of a model drug. Journal of Controlled Release 1998, 52:41-51.
    • (1998) Journal of Controlled Release , vol.52 , pp. 41-51
    • Iza, M.1
  • 23
    • 64249110701 scopus 로고    scopus 로고
    • Preparation and characterization of silicone hydrogel lens containing poly(ethylene glycol)
    • Jang H.N., et al. Preparation and characterization of silicone hydrogel lens containing poly(ethylene glycol). Polymer-Korea 2009, 33:169-174.
    • (2009) Polymer-Korea , vol.33 , pp. 169-174
    • Jang, H.N.1
  • 24
    • 0037122786 scopus 로고    scopus 로고
    • Thermosensitive sol-gel reversible hydrogels
    • Jeong B., et al. Thermosensitive sol-gel reversible hydrogels. Advanced Drug Delivery Reviews 2002, 54:37-51.
    • (2002) Advanced Drug Delivery Reviews , vol.54 , pp. 37-51
    • Jeong, B.1
  • 25
    • 67349287582 scopus 로고    scopus 로고
    • Surface detection errors cause overestimation of the modulus in nanoindentation on soft materials
    • Kaufman J.D., Klapperich C.M. Surface detection errors cause overestimation of the modulus in nanoindentation on soft materials. Journal of the Mechanical Behavior of Biomedical 2009, 2:312-317.
    • (2009) Journal of the Mechanical Behavior of Biomedical , vol.2 , pp. 312-317
    • Kaufman, J.D.1    Klapperich, C.M.2
  • 26
    • 44649130100 scopus 로고    scopus 로고
    • Time-dependent mechanical characterization of poly(2-hydroxyethyl methacrylate) hydrogels using nanoindentation and unconfined compression
    • Kaufman J.D., et al. Time-dependent mechanical characterization of poly(2-hydroxyethyl methacrylate) hydrogels using nanoindentation and unconfined compression. Journal of Materials Research 2008, 23:1472-1481.
    • (2008) Journal of Materials Research , vol.23 , pp. 1472-1481
    • Kaufman, J.D.1
  • 27
    • 34748902324 scopus 로고    scopus 로고
    • Microengineered hydrogels for tissue engineering
    • Khademhosseini A., Langer R. Microengineered hydrogels for tissue engineering. Biomaterials 2007, 28:5087-5092.
    • (2007) Biomaterials , vol.28 , pp. 5087-5092
    • Khademhosseini, A.1    Langer, R.2
  • 28
    • 0037169124 scopus 로고    scopus 로고
    • Nanocrystallization during nanoindentation of a bulk amorphous metal alloy at room temperature
    • Kim J.J., et al. Nanocrystallization during nanoindentation of a bulk amorphous metal alloy at room temperature. Science 2002, 295:654-657.
    • (2002) Science , vol.295 , pp. 654-657
    • Kim, J.J.1
  • 29
    • 0035394693 scopus 로고    scopus 로고
    • Nanomechanical properties of polymers determined from nanoindentation experiments
    • Klapperich C., et al. Nanomechanical properties of polymers determined from nanoindentation experiments. Journal of Tribology-Transactions of the Asme 2001, 123:624-631.
    • (2001) Journal of Tribology-Transactions of the Asme , vol.123 , pp. 624-631
    • Klapperich, C.1
  • 30
    • 67349148917 scopus 로고    scopus 로고
    • Unconfined compression properties of a porous poly(vinyl alcohol)-chitosan-based hydrogel after hydration
    • Lee S.Y., et al. Unconfined compression properties of a porous poly(vinyl alcohol)-chitosan-based hydrogel after hydration. Acta Biomaterialia 2009, 5:1919-1925.
    • (2009) Acta Biomaterialia , vol.5 , pp. 1919-1925
    • Lee, S.Y.1
  • 31
    • 33847036735 scopus 로고    scopus 로고
    • Soft biological materials and their impact on cell function
    • Levental I., et al. Soft biological materials and their impact on cell function. Soft Matter 2007, 3:299-306.
    • (2007) Soft Matter , vol.3 , pp. 299-306
    • Levental, I.1
  • 32
    • 0036472312 scopus 로고    scopus 로고
    • Measuring the spring constant of atomic force microscope cantilevers: thermal fluctuations and other methods
    • Levy R., Maaloum M. Measuring the spring constant of atomic force microscope cantilevers: thermal fluctuations and other methods. Nanotechnology 2002, 13:33-37.
    • (2002) Nanotechnology , vol.13 , pp. 33-37
    • Levy, R.1    Maaloum, M.2
  • 33
    • 0036478720 scopus 로고    scopus 로고
    • A review of nanoindentation continuous stiffness measurement technique and its applications
    • Li X.D., Bhushan B. A review of nanoindentation continuous stiffness measurement technique and its applications. Mater. Charact. 2002, 48:11-36.
    • (2002) Mater. Charact. , vol.48 , pp. 11-36
    • Li, X.D.1    Bhushan, B.2
  • 34
    • 41149154011 scopus 로고    scopus 로고
    • Nanomechanics of polymer gels and biological tissues: a critical review of analytical approaches in the Hertzian regime and beyond
    • Lin D.C., Horkay F. Nanomechanics of polymer gels and biological tissues: a critical review of analytical approaches in the Hertzian regime and beyond. Soft Matter 2008, 4:669-682.
    • (2008) Soft Matter , vol.4 , pp. 669-682
    • Lin, D.C.1    Horkay, F.2
  • 35
    • 67349152334 scopus 로고    scopus 로고
    • Mechanical characterization of soft viscoelastic gels via indentation and optimization-based inverse finite element analysis
    • Liu K.F., et al. Mechanical characterization of soft viscoelastic gels via indentation and optimization-based inverse finite element analysis. Journal of the Mechanical Behavior of Biomedical 2009, 2:355-363.
    • (2009) Journal of the Mechanical Behavior of Biomedical , vol.2 , pp. 355-363
    • Liu, K.F.1
  • 36
    • 77955882441 scopus 로고    scopus 로고
    • Probing soft matter with the atomic force microscopies: imaging and force spectroscopy
    • McConney M.E., et al. Probing soft matter with the atomic force microscopies: imaging and force spectroscopy. Polymer Reviews 2010, 50:235-286.
    • (2010) Polymer Reviews , vol.50 , pp. 235-286
    • McConney, M.E.1
  • 37
    • 0033600290 scopus 로고    scopus 로고
    • A reversibly antigen-responsive hydrogel
    • Miyata T., et al. A reversibly antigen-responsive hydrogel. Nature 1999, 399:766-769.
    • (1999) Nature , vol.399 , pp. 766-769
    • Miyata, T.1
  • 38
    • 0036345151 scopus 로고    scopus 로고
    • Photopolymerizable hydrogels for tissue engineering applications
    • Nguyen K.T., West J.L. Photopolymerizable hydrogels for tissue engineering applications. Biomaterials 2002, 23:4307-4314.
    • (2002) Biomaterials , vol.23 , pp. 4307-4314
    • Nguyen, K.T.1    West, J.L.2
  • 39
    • 0035892432 scopus 로고    scopus 로고
    • Soft contact lens polymers: an evolution
    • Nicolson P.C., Vogt J. Soft contact lens polymers: an evolution. Biomaterials 2001, 22:3273-3283.
    • (2001) Biomaterials , vol.22 , pp. 3273-3283
    • Nicolson, P.C.1    Vogt, J.2
  • 40
    • 1842712700 scopus 로고    scopus 로고
    • Synthesis and property of hydrogel membranes consisting of fumaramate with phosphorylcholine group
    • Oishi T., et al. Synthesis and property of hydrogel membranes consisting of fumaramate with phosphorylcholine group. Journal of Applied Polymer Science 2004, 92:2552-2557.
    • (2004) Journal of Applied Polymer Science , vol.92 , pp. 2552-2557
    • Oishi, T.1
  • 41
    • 3042606295 scopus 로고    scopus 로고
    • Measurement of hardness and elastic modulus by instrumented indentation: advances in understanding and refinements to methodology
    • Oliver W.C., Pharr G.M. Measurement of hardness and elastic modulus by instrumented indentation: advances in understanding and refinements to methodology. Journal of Materials Research 2004, 19:3-20.
    • (2004) Journal of Materials Research , vol.19 , pp. 3-20
    • Oliver, W.C.1    Pharr, G.M.2
  • 43
    • 33745001030 scopus 로고    scopus 로고
    • The use of poly(ethylene glycol) hydrogels to investigate the impact of ECM chemistry and mechanics on smooth muscle cells
    • Peyton S.R., et al. The use of poly(ethylene glycol) hydrogels to investigate the impact of ECM chemistry and mechanics on smooth muscle cells. Biomaterials 2006, 27:4881-4893.
    • (2006) Biomaterials , vol.27 , pp. 4881-4893
    • Peyton, S.R.1
  • 44
    • 84971928468 scopus 로고
    • Measurement of thin film mechanical properties using nanoindentation
    • Pharr G.M., Oliver W.C. Measurement of thin film mechanical properties using nanoindentation. MRS Bull. 1992, 17:28-33.
    • (1992) MRS Bull. , vol.17 , pp. 28-33
    • Pharr, G.M.1    Oliver, W.C.2
  • 45
    • 0035806892 scopus 로고    scopus 로고
    • Fabrication of poly(ethylene glycol) hydrogel microstructures using photolithography
    • Revzin A., et al. Fabrication of poly(ethylene glycol) hydrogel microstructures using photolithography. Langmuir 2001, 17:5440-5447.
    • (2001) Langmuir , vol.17 , pp. 5440-5447
    • Revzin, A.1
  • 46
    • 77149133749 scopus 로고    scopus 로고
    • Cell adhesion strength is controlled by intermolecular spacing of adhesion receptors
    • Selhuber-Unkel C., et al. Cell adhesion strength is controlled by intermolecular spacing of adhesion receptors. Biophysical Journal 2010, 98:543-551.
    • (2010) Biophysical Journal , vol.98 , pp. 543-551
    • Selhuber-Unkel, C.1
  • 47
    • 37349005914 scopus 로고    scopus 로고
    • Fibroblast adaptation and stiffness matching to soft elastic substrates
    • Solon J., et al. Fibroblast adaptation and stiffness matching to soft elastic substrates. Biophysical Journal 2007, 93:4453-4461.
    • (2007) Biophysical Journal , vol.93 , pp. 4453-4461
    • Solon, J.1
  • 49
    • 27944466697 scopus 로고    scopus 로고
    • Exploring and engineering the cell surface interface
    • Stevens M.M., George J.H. Exploring and engineering the cell surface interface. Science 2005, 310:1135-1138.
    • (2005) Science , vol.310 , pp. 1135-1138
    • Stevens, M.M.1    George, J.H.2
  • 51
    • 34247161460 scopus 로고    scopus 로고
    • Bioresponsive hydrogels
    • Ulijn R.V., et al. Bioresponsive hydrogels. Materials Today 2007, 10:40-48.
    • (2007) Materials Today , vol.10 , pp. 40-48
    • Ulijn, R.V.1
  • 52
    • 41349105238 scopus 로고    scopus 로고
    • In situ gelling hydrogels for pharmaceutical and biomedical applications
    • Van Tomme S.R., et al. In situ gelling hydrogels for pharmaceutical and biomedical applications. International Journal of Pharmaceutics 2008, 355:1-18.
    • (2008) International Journal of Pharmaceutics , vol.355 , pp. 1-18
    • Van Tomme, S.R.1
  • 53
    • 33745792350 scopus 로고    scopus 로고
    • Measuring the modulus of soft polymer networks via a buckling-based metrology
    • Wilder E.A., et al. Measuring the modulus of soft polymer networks via a buckling-based metrology. Macromolecules 2006, 39:4138-4143.
    • (2006) Macromolecules , vol.39 , pp. 4138-4143
    • Wilder, E.A.1
  • 54
    • 33947495216 scopus 로고    scopus 로고
    • Imaging of soft matter with tapping-mode atomic force microscopy and non-contact-mode atomic force microscopy
    • Yang C.W., et al. Imaging of soft matter with tapping-mode atomic force microscopy and non-contact-mode atomic force microscopy. Nanotechnology 2007, 18:8.
    • (2007) Nanotechnology , vol.18 , pp. 8
    • Yang, C.W.1
  • 55
    • 0032981428 scopus 로고    scopus 로고
    • Electron beam crosslinked PEO and PEO PVA hydrogels for wound dressing
    • Yoshii F., et al. Electron beam crosslinked PEO and PEO PVA hydrogels for wound dressing. Radiation Physics and Chemistry 1999, 55:133-138.
    • (1999) Radiation Physics and Chemistry , vol.55 , pp. 133-138
    • Yoshii, F.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.