메뉴 건너뛰기




Volumn 64, Issue 1, 2013, Pages 280-289

Concurrent control chart patterns recognition with singular spectrum analysis and support vector machine

Author keywords

Concurrent patterns; Control charts; Singular spectrum analysis; Support vector machine

Indexed keywords

CONCURRENCY CONTROL; CONTROL CHARTS; FLOWCHARTING; INDEPENDENT COMPONENT ANALYSIS; PATTERN RECOGNITION; SPECTRUM ANALYSIS; SUPPORT VECTOR MACHINES;

EID: 84870216809     PISSN: 03608352     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.cie.2012.10.009     Document Type: Article
Times cited : (27)

References (49)
  • 1
    • 27144489164 scopus 로고    scopus 로고
    • A tutorial on support vector machines for pattern recognition
    • Burges, C. J. C. (1998). A tutorial on support vector machines for pattern recognition. Data Mining and Knowledge Discovery, 2(2), 955-974.
    • (1998) Data Mining and Knowledge Discovery , vol.2 , Issue.2 , pp. 955-974
    • Burges, C.J.C.1
  • 2
    • 0001874436 scopus 로고    scopus 로고
    • Practical method for determining the minimum embedding dimension of a scalar time series
    • Cao, L. Y. (1997). Practical method for determining the minimum embedding dimension of a scalar time series. Physica D., 110(1-2), 43-50.
    • (1997) Physica D , vol.110 , Issue.1-2 , pp. 43-50
    • Cao, L.Y.1
  • 3
    • 0029196273 scopus 로고
    • A multi-layer neural network model for detecting changes in the process mean
    • Cheng, C. (1995). A multi-layer neural network model for detecting changes in the process mean. Computers & Industrial Engineering, 28(1), 51-61.
    • (1995) Computers & Industrial Engineering , vol.28 , Issue.1 , pp. 51-61
    • Cheng, C.1
  • 4
    • 78650412665 scopus 로고    scopus 로고
    • Variance shifts identification model of bivariate process based on LS-SVM pattern recognizer
    • Cheng, Z., Ma, Y., & Bu, J. (2011). Variance shifts identification model of bivariate process based on LS-SVM pattern recognizer. Communications in Statisticssimulation and Computation, 40(2), 286-296. http://dx.doi.org/10. 1080/ 03610918.2010.535625.
    • (2011) Communications in Statisticssimulation and Computation , vol.40 , Issue.2 , pp. 286-296
    • Cheng, Z.1    Ma, Y.2    Bu, J.3
  • 5
    • 34250880786 scopus 로고    scopus 로고
    • A hybrid system for SPC concurrent pattern recognition
    • DOI 10.1016/j.aei.2007.03.002, PII S1474034607000225, Applications Eligible for Data Mining
    • Chen, Z., Lu, S., & Lam, S. (2007). A hybrid system for SPC concurrent pattern recognition. Advanced Engineering Informatics, 21(3), 303-310. (Pubitemid 46991420)
    • (2007) Advanced Engineering Informatics , vol.21 , Issue.3 , pp. 303-310
    • Chen, Z.1    Lu, S.2    Lam, S.3
  • 6
    • 0009434228 scopus 로고    scopus 로고
    • Performance of the control chart trend rule under linear shift
    • Davis, R. B., & Woodall, W. (1998). Performance of the control chart trend rule under linear shift. Journal of Quality Technology, 20(4), 260-262.
    • (1998) Journal of Quality Technology , vol.20 , Issue.4 , pp. 260-262
    • Davis, R.B.1    Woodall, W.2
  • 7
    • 77955656200 scopus 로고    scopus 로고
    • Control chart pattern recognition using an optimized neural network and efficient features
    • Ebrahimzadeh, A., & Ranaee, V. (2010). Control chart pattern recognition using an optimized neural network and efficient features. ISA Transactions, 49(3), 387-393.
    • (2010) ISA Transactions , vol.49 , Issue.3 , pp. 387-393
    • Ebrahimzadeh, A.1    Ranaee, V.2
  • 8
    • 84949644024 scopus 로고    scopus 로고
    • 16th international conference on pattern recognition
    • Franc, V., & Hlavac, V. (2002). Multi-class support vector machine. In 16th international conference on pattern recognition (Vol. 2, pp. 236-239).
    • (2002) Multi-class Support Vector Machine , vol.2 , pp. 236-239
    • Franc, V.1    Hlavac, V.2
  • 9
    • 77953619094 scopus 로고    scopus 로고
    • Control chart pattern recognition using feature based learning vector quantization
    • Gauri, S. (2010). Control chart pattern recognition using feature based learning vector quantization. International Journal of Advanced Manufacturing Technology, 48(9-12), 1061-1073.
    • (2010) International Journal of Advanced Manufacturing Technology , vol.48 , Issue.9-12 , pp. 1061-1073
    • Gauri, S.1
  • 10
    • 36048944428 scopus 로고    scopus 로고
    • A study on the various features for effective control chart pattern recognition
    • DOI 10.1007/s00170-006-0591-6
    • Gauri, S. K., & Chakraborty, S. (2007). A study on the various features for effective control chart pattern recognition. International Journal of Advanced Manufacturing Technology, 34(3), 385-398. (Pubitemid 350092350)
    • (2007) International Journal of Advanced Manufacturing Technology , vol.34 , Issue.3-4 , pp. 385-398
    • Gauri, S.K.1    Chakraborty, S.2
  • 11
    • 67349201688 scopus 로고    scopus 로고
    • Recognition of control chart patterns using improved selection of features
    • Gauri, S. K., & Chakraborty, S. (2009). Recognition of control chart patterns using improved selection of features. Computers & Industrial Engineering, 56, 1577-1588.
    • (2009) Computers & Industrial Engineering , vol.56 , pp. 1577-1588
    • Gauri, S.K.1    Chakraborty, S.2
  • 12
    • 84888639250 scopus 로고    scopus 로고
    • Identification of concurrent control chart patterns with singular spectrum analysis and learning vector quantization
    • Gu, N., Cao, Z., Xie, L., Creighton, D., Tan, M., & Nahavandi, S. (2012). Identification of concurrent control chart patterns with singular spectrum analysis and learning vector quantization. Journal of Intelligent Manufacturing. http://dx.doi.org/ 10.1007/s10845-012-0659-0
    • (2012) Journal of Intelligent Manufacturing , vol.49
    • Gu, N.1    Cao, Z.2    Xie, L.3    Creighton, D.4    Tan, M.5    Nahavandi, S.6
  • 13
    • 77950593813 scopus 로고    scopus 로고
    • Simultaneous process mean and variance monitoring using artificial neural networks
    • Guh, R. (2010). Simultaneous process mean and variance monitoring using artificial neural networks. Computers & Industrial Engineering, 58(4), 739-753.
    • (2010) Computers & Industrial Engineering , vol.58 , Issue.4 , pp. 739-753
    • Guh, R.1
  • 14
    • 0033221564 scopus 로고    scopus 로고
    • Neural network approach to characterize pattern parameters in process control charts
    • DOI 10.1023/A:1008975131304
    • Guh, R., & Tannock, J. (1999). A neural network approach to characterize pattern parameters in process control charts. Journal of Intelligent Manufacturing, 10(5), 449-462. (Pubitemid 32082382)
    • (1999) Journal of Intelligent Manufacturing , vol.10 , Issue.5 , pp. 449-462
    • Guh, R.-S.1    Tannock, J.D.T.2
  • 15
    • 80053064116 scopus 로고    scopus 로고
    • Family of blind source separation methods based on generalised constant modulus criterion
    • Gu, N., Nahavandi, S., Yu, W., & Creighton, D. (2011). Family of blind source separation methods based on generalised constant modulus criterion. Electronics Letters, 47(10), 595-597.
    • (2011) Electronics Letters , vol.47 , Issue.10 , pp. 595-597
    • Gu, N.1    Nahavandi, S.2    Yu, W.3    Creighton, D.4
  • 16
    • 34147095146 scopus 로고    scopus 로고
    • A new blind-equalization algorithm for an FIR SIMO system driven by MPSK signal
    • DOI 10.1109/TCSII.2006.888734
    • Gu, N., Xiang, Y., Tan, M., & Cao, Z. (2007). A new blindequalization algorithm for an FIR SIMO system driven by MPSK signal. IEEE Transactions on Circuits and Systems - II Express Briefs, 54(3), 227-231. (Pubitemid 46563185)
    • (2007) IEEE Transactions on Circuits and Systems II: Express Briefs , vol.54 , Issue.3 , pp. 227-231
    • Gu, N.1    Xiang, Y.2    Tan, M.3    Cao, Z.4
  • 17
    • 0036161259 scopus 로고    scopus 로고
    • Gene selection for cancer classification using support vector machines
    • DOI 10.1023/A:1012487302797
    • Guyon, I. et al. (2002). Gene selection for cancer classification using support vector machines. Machine learning, 46, 389-422. (Pubitemid 34129977)
    • (2002) Machine Learning , vol.46 , Issue.1-3 , pp. 389-422
    • Guyon, I.1    Weston, J.2    Barnhill, S.3    Vapnik, V.4
  • 18
    • 0036505670 scopus 로고    scopus 로고
    • A comparison of methods for multiclass support vector machines
    • Hsu, C. W., & Lin, C. J. (2002). A comparison of methods for multiclass support vector machines. IEEE Transactions on Neural Network, 13, 415-425.
    • (2002) IEEE Transactions on Neural Network , vol.13 , pp. 415-425
    • Hsu, C.W.1    Lin, C.J.2
  • 19
    • 0032629347 scopus 로고    scopus 로고
    • Fast and robust fixed-point algorithms for independent component analysis
    • Hyvarinen, A. (1999). Fast and robust fixed-point algorithms for independent component analysis. IEEE Transactions on Neural Networks, 10(3), 626-634.
    • (1999) IEEE Transactions on Neural Networks , vol.10 , Issue.3 , pp. 626-634
    • Hyvarinen, A.1
  • 22
    • 5144229037 scopus 로고    scopus 로고
    • B. Scholkopf, C. J C. Burges, & A. J. Smola (Eds.). Advances in kernel methods: Support vector learning, Cambridge, MA: MIT Press
    • Kressel, U. (1999). Pairwise classification and support vector machines. In B. Scholkopf, C. J. C. Burges, & A. J. Smola (Eds.). Advances in kernel methods: Support vector learning (Vol. 255268). Cambridge, MA: MIT Press.
    • (1999) Pairwise Classification and Support Vector Machines , vol.255-268
    • Kressel, U.1
  • 23
    • 7244248755 scopus 로고    scopus 로고
    • A comparative study of feature selection and multiclassification methods for tissue classification based on gene expression
    • Li, T. et al. (2004). A comparative study of feature selection and multiclassification methods for tissue classification based on gene expression. Bioinformatics, 20, 2429-2437.
    • (2004) Bioinformatics , vol.20 , pp. 2429-2437
    • Li, T.1
  • 24
    • 80054955956 scopus 로고    scopus 로고
    • Effective recognition of control chart patterns in autocorrelated data using a support vector machine based approach
    • Lin, S., Guh, R., & Shiue, Y. (2011). Effective recognition of control chart patterns in autocorrelated data using a support vector machine based approach. Computers & Industrial Engineering, 61(4), 1123-1134.
    • (2011) Computers & Industrial Engineering , vol.61 , Issue.4 , pp. 1123-1134
    • Lin, S.1    Guh, R.2    Shiue, Y.3
  • 25
    • 79955989585 scopus 로고    scopus 로고
    • Mixture control chart patterns recognition using independent component analysis and support vector machine
    • Lu, C. J., Shao, Y. E., & Li, P. H. (2011). Mixture control chart patterns recognition using independent component analysis and support vector machine. Neurocomputing. http://dx.doi.org/10.1016/j.neucom.2010.06.036.
    • (2011) Neurocomputing
    • Lu, C.J.1    Shao, Y.E.2    Li, P.H.3
  • 26
    • 0021514376 scopus 로고
    • The shewhart control chart tests for special causes
    • Nelson, L. S. (1984). The shewhart control chart tests for special causes. Journal of Quality Technology, 16(4), 237-239.
    • (1984) Journal of Quality Technology , vol.16 , Issue.4 , pp. 237-239
    • Nelson, L.S.1
  • 27
    • 84872599690 scopus 로고
    • Adaptive filtering and maximum entropy spectra with application to changes in atmospheric angular momentum
    • Penland, C., & Weickmann, K. M. (1991). Adaptive filtering and maximum entropy spectra with application to changes in atmospheric angular momentum. Journal of Geophysical Research, 22, 659-671.
    • (1991) Journal of Geophysical Research , vol.22 , pp. 659-671
    • Penland, C.1    Weickmann, K.M.2
  • 28
    • 0035889166 scopus 로고    scopus 로고
    • Control chart pattern recognition using back propagation artificial neural networks
    • DOI 10.1080/00207540110061616
    • Perry, M., JK, S., & Velasco, T. (2001). Control chart pattern recognition using back propagation artificial. Journal of Geophysical Research, 39(15), 3399-3418. (Pubitemid 35165521)
    • (2001) International Journal of Production Research , vol.39 , Issue.15 , pp. 3399-3418
    • Perry, M.B.1    Spoerre, J.K.2    Velasco, T.3
  • 29
    • 0000974044 scopus 로고
    • Control chart pattern recognition using neural networks
    • Pham, D., & Oztemel, E. (1992). Control chart pattern recognition using neural networks. Journal of Systems Engineering, 2(4), 256-262.
    • (1992) Journal of Systems Engineering , vol.2 , Issue.4 , pp. 256-262
    • Pham, D.1    Oztemel, E.2
  • 32
    • 79960836280 scopus 로고    scopus 로고
    • The use of neural networks in statistical process control
    • Psarakis, S. (2011). The use of neural networks in statistical process control. Quality and Reliability Engineering International, 27(5), 641-650. http://dx.doi.org/ 10.1002/qre.1227.
    • (2011) Quality and Reliability Engineering International , vol.27 , Issue.5 , pp. 641-650
    • Psarakis, S.1
  • 33
    • 84858701048 scopus 로고    scopus 로고
    • Neural networks for detecting cyclic behavior in autocorrelated process
    • Purintrapiban, U., & Corley, H. W. (2012). Neural networks for detecting cyclic behavior in autocorrelated process. Computers & Industrial Engineering, 62(4), 1093-1108.
    • (2012) Computers & Industrial Engineering , vol.62 , Issue.4 , pp. 1093-1108
    • Purintrapiban, U.1    Corley, H.W.2
  • 37
    • 0000779360 scopus 로고
    • New York: Springer- Verlag (chap.Detecting strange attractors in turbulence
    • Takens, F. (1981). Dynamical Systems and Turbulence. New York: Springer-Verlag, p 366-381 (chap.Detecting strange attractors in turbulence).
    • (1981) Dynamical Systems and Turbulence , pp. 366-381
    • Takens, F.1
  • 38
    • 84881555672 scopus 로고
    • Multichannel blind separation and deconvolution of images for document analysis
    • New York: Springer-Verlag
    • Vapnik, V. (1995). Multichannel blind separation and deconvolution of images for document analysis. The nature of statistical learning theory. New York: Springer- Verlag.
    • (1995) The Nature of Statistical Learning Theory
    • Vapnik, V.1
  • 39
    • 67749088653 scopus 로고    scopus 로고
    • A hybrid approach for identification of concurrent control chart patterns
    • Wang, C., Dong, T., & Kuo, W. (2009). A hybrid approach for identification of concurrent control chart patterns. Journal of Intelligent Manufacturing, 20(4), 409-419.
    • (2009) Journal of Intelligent Manufacturing , vol.20 , Issue.4 , pp. 409-419
    • Wang, C.1    Dong, T.2    Kuo, W.3
  • 40
    • 33751510941 scopus 로고    scopus 로고
    • An integrated approach for process monitoring using wavelet analysis and competitive neural network
    • DOI 10.1080/00207540500442393, PII P024657446K2605P
    • Wang, C., Kuo, W., & Qi, H. (2007). An integrated approach for process monitoring using wavelet analysis and competitive neural network. International Journal of Production Research, 45(1), 227-244. (Pubitemid 44837920)
    • (2007) International Journal of Production Research , vol.45 , Issue.1 , pp. 227-244
    • Wang, C.-H.1    Kuo, W.2    Qi, H.3
  • 43
    • 33748524170 scopus 로고    scopus 로고
    • Blind equalization of nonirreducible systems using the CM criterion
    • DOI 10.1109/TCSII.2006.875382
    • Xiang, Y., Nguyen, V., & Gu, N. (2006). Blind equalization of nonirreducible systems using the cm criterion. IEEE Transactions On Circuits and Systems II - Express Briefs, 53(8), 758-762. (Pubitemid 44363893)
    • (2006) IEEE Transactions on Circuits and Systems II: Express Briefs , vol.53 , Issue.8 , pp. 758-762
    • Xiang, Y.1    Nguyen, V.K.2    Gu, N.3
  • 44
    • 79960277723 scopus 로고    scopus 로고
    • Feature dimensionality reduction for examplebased image super-resolution
    • Xie, L., Li, D., & Simske, S. J. (2011). Feature dimensionality reduction for examplebased image super-resolution. Journal of Pattern Recognition Research, 2, 130-139.
    • (2011) Journal of Pattern Recognition Research , vol.2 , pp. 130-139
    • Xie, L.1    Li, D.2    Simske, S.J.3
  • 45
    • 0037103442 scopus 로고    scopus 로고
    • A fuzzy-soft learning vector quantization for control chart pattern recognition
    • Yang, M., & Yang, J. (2002). A fuzzy-soft learning vector quantization for control chart pattern recognition. International Journal of Production Research, 40(12), 2721-2731.
    • (2002) International Journal of Production Research , vol.40 , Issue.12 , pp. 2721-2731
    • Yang, M.1    Yang, J.2
  • 46
    • 3242692277 scopus 로고    scopus 로고
    • Recognition of control chart patterns using multiresolution wavelets analysis and neural networks
    • Yousef, A. (2004). Recognition of control chart patterns using multiresolution wavelets analysis and neural networks. Computers & Industrial Engineering, 47, 17-29.
    • (2004) Computers & Industrial Engineering , vol.47 , pp. 17-29
    • Yousef, A.1
  • 47
    • 80053185356 scopus 로고    scopus 로고
    • Pattern recognition of manufacturing process signals using Gaussian mixture models-based recognition systems
    • Yu, J. (2011). Pattern recognition of manufacturing process signals using Gaussian mixture models-based recognition systems. Computers & Industrial Engineering, 61(3), 881-890.
    • (2011) Computers & Industrial Engineering , vol.61 , Issue.3 , pp. 881-890
    • Yu, J.1
  • 48
    • 77956737752 scopus 로고    scopus 로고
    • Automatic beamforming for blind extraction of speech from music environment using variance of spectral flux-inspired criterion
    • Yu, T., & Hassen, J. (2010). Automatic beamforming for blind extraction of speech from music environment using variance of spectral flux-inspired criterion. IEEE Journal of Selected Topics in Signal Processing, 4(5), 785-797.
    • (2010) IEEE Journal of Selected Topics in Signal Processing , vol.4 , Issue.5 , pp. 785-797
    • Yu, T.1    Hassen, J.2
  • 49
    • 79551630057 scopus 로고    scopus 로고
    • LRProb control chart based on logistic regression for monitoring mean shifts of auto-correlated manufacturing processes
    • Yu, J., & Liu, J. (2011). LRProb control chart based on logistic regression for monitoring mean shifts of auto-correlated manufacturing processes. International Journal of Production Research, 49(28), 2301-2326. http:// dx.doi.org/10.1080/00207541003694803.
    • (2011) International Journal of Production Research , vol.49 , Issue.28 , pp. 2301-2326
    • Yu, J.1    Liu, J.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.