메뉴 건너뛰기




Volumn 49, Issue 8, 2011, Pages 2301-2326

LRProb control chart based on logistic regression for monitoring mean shifts of auto-correlated manufacturing processes

Author keywords

auto correlation; logistic regression; manufacturing process; statistical process control

Indexed keywords

ABNORMAL PATTERNS; CONTROL CHARTING; CONTROL CHARTS; CORRELATED PROCESS DATA; FEASIBLE ALTERNATIVES; LOGISTIC REGRESSION; LOGISTIC REGRESSIONS; MANUFACTURING PROCESS; MEAN SHIFT; OCCURRENCE PROBABILITY; PREVIOUS YEAR; PROCESS CHANGE; PROCESS INDUSTRIES; PROCESS MEAN SHIFTS; PROCESS PARAMETERS; PROCESS QUALITY; PROCESS STATE; QUALITY MONITORING; QUANTITATIVE ASSESSMENTS; REAL-WORLD; SIMULATED PROCESS; STATISTICAL PROCESS; VISUALISATION;

EID: 79551630057     PISSN: 00207543     EISSN: 1366588X     Source Type: Journal    
DOI: 10.1080/00207541003694803     Document Type: Article
Times cited : (18)

References (39)
  • 1
    • 0032188368 scopus 로고    scopus 로고
    • Robustness of forecast-based monitoring schemes
    • Adams, B.M. and Tseng, I.T., 1998. Robustness of forecast-based monitoring schemes. Journal of Quality Technology, 30 (4), 328-339.
    • (1998) Journal of Quality Technology , vol.30 , Issue.4 , pp. 328-339
    • Adams, B.M.1    Tseng, I.T.2
  • 3
    • 0028468293 scopus 로고
    • Using mutual information for selecting features in supervised neural net learning
    • Battiti, R., 1994. Using mutual information for selecting features in supervised neural net learning. IEEE Transaction on Neural Networks, 5 (4), 537-550.
    • (1994) IEEE Transaction on Neural Networks , vol.5 , Issue.4 , pp. 537-550
    • Battiti, R.1
  • 6
    • 0030211371 scopus 로고    scopus 로고
    • A neural fuzzy control chart for detecting and classifying process mean shifts
    • Chang, S.I. and Aw, C.A., 1996. A neural fuzzy control chart for detecting and classifying process mean shifts. International Journal of Production Research, 34 (8), 2265-2278.
    • (1996) International Journal of Production Research , vol.34 , Issue.8 , pp. 2265-2278
    • Chang, S.I.1    Aw, C.A.2
  • 7
    • 0029196273 scopus 로고
    • A multi-layer neural network model for detecting changes in the process mean
    • Cheng, C.S., 1995. A multi-layer neural network model for detecting changes in the process mean. Computers & Industrial Engineering, 28 (1), 51-61.
    • (1995) Computers & Industrial Engineering , vol.28 , Issue.1 , pp. 51-61
    • Cheng, C.S.1
  • 8
    • 0037146388 scopus 로고    scopus 로고
    • Support vector machines for recognizing shifts in correlation and other manufacturing and other manufacturing processes
    • Chinnam, R.B., 2002. Support vector machines for recognizing shifts in correlation and other manufacturing and other manufacturing processes. International Journal of Production Research, 40 (17), 4449-4466.
    • (2002) International Journal of Production Research , vol.40 , Issue.17 , pp. 4449-4466
    • Chinnam, R.B.1
  • 9
    • 0035262745 scopus 로고    scopus 로고
    • Shifts recognition in correlated process data using a neural network
    • Chiu, C.C., Chen, M.K., and Lee, K.M., 2001. Shifts recognition in correlated process data using a neural network. International Journal of Systems Science, 32 (2), 137-143.
    • (2001) International Journal of Systems Science , vol.32 , Issue.2 , pp. 137-143
    • Chiu, C.C.1    Chen, M.K.2    Lee, K.M.3
  • 10
    • 0032022864 scopus 로고    scopus 로고
    • Using radial basis function neural networks to recognize shifts in correlated manufacturing process parameters
    • Cook, D.F. and Chiu, C.C., 1998. Using radial basis function neural networks to recognize shifts in correlated manufacturing process parameters. IIE Transactions, 30 (3), 227-234.
    • (1998) IIE Transactions , vol.30 , Issue.3 , pp. 227-234
    • Cook, D.F.1    Chiu, C.C.2
  • 11
    • 0035923922 scopus 로고    scopus 로고
    • Utilization of neural networks for the recognition of variance shifts in correlated manufacturing process parameters
    • Cook, D.F., Zobel, C.W., and Nottingham, Q.J., 2001. Utilization of neural networks for the recognition of variance shifts in correlated manufacturing process parameters. International Journal of Production Research, 39 (17), 3881-3887.
    • (2001) International Journal of Production Research , vol.39 , Issue.17 , pp. 3881-3887
    • Cook, D.F.1    Zobel, C.W.2    Nottingham, Q.J.3
  • 12
    • 23144467659 scopus 로고    scopus 로고
    • A hybrid learning-based model for on-line detection and analysis of control chart patterns
    • Guh., R.S., 2005. A hybrid learning-based model for on-line detection and analysis of control chart patterns. Computers & Industrial Engineering, 49 (1), 35-62.
    • (2005) Computers & Industrial Engineering , vol.49 , Issue.1 , pp. 35-62
    • Guh, R.S.1
  • 14
    • 0242333136 scopus 로고    scopus 로고
    • Improved SPC chart pattern recognition using statistical features
    • Hassan, A., et al., 2003. Improved SPC chart pattern recognition using statistical features. International Journal of Production Research, 41 (7), 1587-1603.
    • (2003) International Journal of Production Research , vol.41 , Issue.7 , pp. 1587-1603
    • Hassan, A.1
  • 17
    • 1342265964 scopus 로고    scopus 로고
    • Detecting process mean shift in the presence of autocorrelation: A neuralnetwork based monitoring scheme
    • Hwarng, H.B., 2004. Detecting process mean shift in the presence of autocorrelation: a neuralnetwork based monitoring scheme. International Journal of Production Research, 42 (3), 573-595.
    • (2004) International Journal of Production Research , vol.42 , Issue.3 , pp. 573-595
    • Hwarng, H.B.1
  • 18
    • 27844603392 scopus 로고    scopus 로고
    • Simultaneous identification of mean shift and correlation change in AR(1) processes
    • Hwarng, H.B., 2005. Simultaneous identification of mean shift and correlation change in AR(1) processes. International Journal of Production Research, 43 (2), 1761-1783.
    • (2005) International Journal of Production Research , vol.43 , Issue.2 , pp. 1761-1783
    • Hwarng, H.B.1
  • 19
    • 0342854441 scopus 로고    scopus 로고
    • A new SPC monitoring method: The ARMA chart
    • Jiang, W., Tsui, K.L., and Woodall, W.H., 2000. A new SPC monitoring method: the ARMA chart. Technometrics, 42 (4), 399-410.
    • (2000) Technometrics , vol.42 , Issue.4 , pp. 399-410
    • Jiang, W.1    Tsui, K.L.2    Woodall, W.H.3
  • 21
    • 78149355539 scopus 로고    scopus 로고
    • Feature selection algorithms: A survey and experimental evaluation
    • 9 December 2002, Maebashi City, Japan
    • Molina, L., Belanche, L., and Nebot, A., 2002. Feature selection algorithms: a survey and experimental evaluation. In: Proceedings of the international conference on data mining, 9 December 2002, Maebashi City, Japan, 306-313.
    • (2002) Proceedings of the International Conference on Data Mining , pp. 306-313
    • Molina, L.1    Belanche, L.2    Nebot, A.3
  • 23
    • 0001562735 scopus 로고    scopus 로고
    • Reducing the run-time complexity in support vector machines
    • B. Scholkopf, C.J.C. Burges, and A.J. Smola, eds. Cambridge, MA: MIT Press, [chapter 16]
    • Osuna, E.E. and Girosi, F., 1999. Reducing the run-time complexity in support vector machines. In: B. Scholkopf, C.J.C. Burges, and A.J. Smola, eds. Advances in kernel methods. Cambridge, MA: MIT Press, 271-283 [chapter 16].
    • (1999) Advances in Kernel Methods , pp. 271-283
    • Osuna, E.E.1    Girosi, F.2
  • 25
    • 34248138917 scopus 로고    scopus 로고
    • Using recurrent neural networks to detect changes in autocorrelated processes for quality monitoring
    • Pacella, M. and Semeraro, Q., 2007. Using recurrent neural networks to detect changes in autocorrelated processes for quality monitoring. Computers & Industrial Engineering, 52 (4), 502-520.
    • (2007) Computers & Industrial Engineering , vol.52 , Issue.4 , pp. 502-520
    • Pacella, M.1    Semeraro, Q.2
  • 26
    • 0024943235 scopus 로고
    • Synthetic neural networks for process control
    • Pugh, G.A., 1989. Synthetic neural networks for process control. Computers & Industrial Engineering, 17 (1-4), 25-26.
    • (1989) Computers & Industrial Engineering , vol.17 , Issue.1-4 , pp. 25-26
    • Pugh, G.A.1
  • 29
    • 0028377883 scopus 로고
    • X-bar and R control chart interpretation using neural computing
    • Smith, A.E., 1994. X-bar and R control chart interpretation using neural computing. International Journal of Production Research, 32 (2), 309-320.
    • (1994) International Journal of Production Research , vol.32 , Issue.2 , pp. 309-320
    • Smith, A.E.1
  • 30
    • 0029775004 scopus 로고    scopus 로고
    • Applying logistic regression to maintenance data to establish inspection intervals
    • 6-10 January 1996, Annapolis, MD, USA
    • Spezzaferro, K.E., 1996. Applying logistic regression to maintenance data to establish inspection intervals. In: Proceedings of the annual reliability and maintainability symposium, 6-10 January 1996, Annapolis, MD, USA, 296-300.
    • (1996) Proceedings of the Annual Reliability and Maintainability Symposium , pp. 296-300
    • Spezzaferro, K.E.1
  • 31
    • 0032091429 scopus 로고    scopus 로고
    • The development and evaluation of CUSUM-based control charts for an AR(1) process
    • Timmer, D.H., Pignateillo, J.J.R., and Longnecker, M., 1998. The development and evaluation of CUSUM-based control charts for an AR(1) process. IIE Transactions, 30 (6), 525-534.
    • (1998) IIE Transactions , vol.30 , Issue.6 , pp. 525-534
    • Timmer, D.H.1    Pignateillo, J.J.R.2    Longnecker, M.3
  • 32
    • 0001759355 scopus 로고
    • Control charts in the presence of data correlation
    • Wardell, D.G., Moskowitz, H., and Plante, R.D., 1992. Control charts in the presence of data correlation. Management Science, 38 (8), 1084-1105.
    • (1992) Management Science , vol.38 , Issue.8 , pp. 1084-1105
    • Wardell, D.G.1    Moskowitz, H.2    Plante, R.D.3
  • 33
    • 84952149041 scopus 로고
    • Run-length distribution of special cause control charts of correlation processes
    • Wardell, D.G., Moskowitz, H., and Plante, R.D., 1994. Run-length distribution of special cause control charts of correlation processes. Technometrics, 36 (1), 3-17.
    • (1994) Technometrics , vol.36 , Issue.1 , pp. 3-17
    • Wardell, D.G.1    Moskowitz, H.2    Plante, R.D.3
  • 34
    • 0038253690 scopus 로고    scopus 로고
    • Joint estimation: SPC method for short-run autocorrelated data
    • Wright, C.M., Booth, D.E., and Hu, M.Y., 2001. Joint estimation: SPC method for short-run autocorrelated data. Journal of Quality Technology, 33 (3), 365-378.
    • (2001) Journal of Quality Technology , vol.33 , Issue.3 , pp. 365-378
    • Wright, C.M.1    Booth, D.E.2    Hu, M.Y.3
  • 36
    • 53349119024 scopus 로고    scopus 로고
    • Using an MQE chart based on a self-organizing map NN to monitor out-of-control signals in manufacturing processes
    • Yu, J.B. and Xi, L.F., 2008. Using an MQE chart based on a self-organizing map NN to monitor out-of-control signals in manufacturing processes. International Journal of Production Research, 46 (21), 5907-5933.
    • (2008) International Journal of Production Research , vol.46 , Issue.21 , pp. 5907-5933
    • Yu, J.B.1    Xi, L.F.2
  • 37
    • 70449590251 scopus 로고    scopus 로고
    • A hybrid learning-based model for on-line monitoring and diagnosis of out-of-control signals in multivariate manufacturing processes
    • Yu, J.B. and Xi, L.F., 2009. A hybrid learning-based model for on-line monitoring and diagnosis of out-of-control signals in multivariate manufacturing processes. International Journal of Production Research, 47 (15), 4077-4108.
    • (2009) International Journal of Production Research , vol.47 , Issue.15 , pp. 4077-4108
    • Yu, J.B.1    Xi, L.F.2
  • 38
    • 0032001756 scopus 로고    scopus 로고
    • A statistical control chart for stationary process data
    • Zhang, N.F., 1998. A statistical control chart for stationary process data. Technometrics, 40 (1), 24-38.
    • (1998) Technometrics , vol.40 , Issue.1 , pp. 24-38
    • Zhang, N.F.1
  • 39
    • 1342308552 scopus 로고    scopus 로고
    • An augmented neural network classification approach to detecting mean shifts in correlated manufacturing process parameters
    • Zobel, C.W., Cook, D.F., and Nottingham, Q.J., 2004. An augmented neural network classification approach to detecting mean shifts in correlated manufacturing process parameters. International Journal of Production Research, 42 (4), 741-758.
    • (2004) International Journal of Production Research , vol.42 , Issue.4 , pp. 741-758
    • Zobel, C.W.1    Cook, D.F.2    Nottingham, Q.J.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.