메뉴 건너뛰기




Volumn 22, Issue 12, 2012, Pages 671-682

Directed cytoskeleton self-organization

Author keywords

Actin; Architecture; Microfabrication; Micropatterning; Microtubule; Polarity

Indexed keywords

ACTIN;

EID: 84869864367     PISSN: 09628924     EISSN: 18793088     Source Type: Journal    
DOI: 10.1016/j.tcb.2012.08.012     Document Type: Review
Times cited : (110)

References (98)
  • 1
    • 39749192575 scopus 로고    scopus 로고
    • Self-organization in cell biology: a brief history
    • Karsenti E. Self-organization in cell biology: a brief history. Nat. Rev. Mol. Cell Biol. 2008, 9:255-262.
    • (2008) Nat. Rev. Mol. Cell Biol. , vol.9 , pp. 255-262
    • Karsenti, E.1
  • 2
    • 79955992225 scopus 로고    scopus 로고
    • Self-regulative organization of the cytoskeleton
    • Huber F., Käs J. Self-regulative organization of the cytoskeleton. Cytoskeleton (Hoboken) 2011, 68:259-265.
    • (2011) Cytoskeleton (Hoboken) , vol.68 , pp. 259-265
    • Huber, F.1    Käs, J.2
  • 3
    • 0342903325 scopus 로고    scopus 로고
    • Physical properties determining self-organization of motors and microtubules
    • Surrey T., et al. Physical properties determining self-organization of motors and microtubules. Science 2001, 292:1167-1171.
    • (2001) Science , vol.292 , pp. 1167-1171
    • Surrey, T.1
  • 4
    • 77956331228 scopus 로고    scopus 로고
    • Polar patterns of driven filaments
    • Schaller V., et al. Polar patterns of driven filaments. Nature 2010, 467:73-77.
    • (2010) Nature , vol.467 , pp. 73-77
    • Schaller, V.1
  • 5
    • 84858773485 scopus 로고    scopus 로고
    • Large-scale vortex lattice emerging from collectively moving microtubules
    • Sumino Y., et al. Large-scale vortex lattice emerging from collectively moving microtubules. Nature 2012, 483:448-452.
    • (2012) Nature , vol.483 , pp. 448-452
    • Sumino, Y.1
  • 6
    • 33645397412 scopus 로고    scopus 로고
    • Microtubule self-organisation by reaction-diffusion processes in miniature cell-sized containers and phospholipid vesicles
    • Cortès S., et al. Microtubule self-organisation by reaction-diffusion processes in miniature cell-sized containers and phospholipid vesicles. Biophys. Chem. 2006, 120:168-177.
    • (2006) Biophys. Chem. , vol.120 , pp. 168-177
    • Cortès, S.1
  • 7
    • 0022555884 scopus 로고
    • Actin and actin-binding proteins. A critical evaluation of mechanisms and functions
    • Pollard T.D., Cooper J.A. Actin and actin-binding proteins. A critical evaluation of mechanisms and functions. Annu. Rev. Biochem. 1986, 55:987-1035.
    • (1986) Annu. Rev. Biochem. , vol.55 , pp. 987-1035
    • Pollard, T.D.1    Cooper, J.A.2
  • 8
    • 0034695421 scopus 로고    scopus 로고
    • Polymerization and structure of nucleotide-free actin filaments
    • De La Cruz E.M., et al. Polymerization and structure of nucleotide-free actin filaments. J. Mol. Biol. 2000, 295:517-526.
    • (2000) J. Mol. Biol. , vol.295 , pp. 517-526
    • De La Cruz, E.M.1
  • 9
    • 84856479181 scopus 로고    scopus 로고
    • Dual-objective STORM reveals three-dimensional filament organization in the actin cytoskeleton
    • Xu K., et al. Dual-objective STORM reveals three-dimensional filament organization in the actin cytoskeleton. Nat. Methods 2012, 9:185-188.
    • (2012) Nat. Methods , vol.9 , pp. 185-188
    • Xu, K.1
  • 10
    • 34247644614 scopus 로고    scopus 로고
    • Regulation of actin filament assembly by Arp2/3 complex and formins
    • Pollard T.D. Regulation of actin filament assembly by Arp2/3 complex and formins. Annu. Rev. Biophys. Biomol. Struct. 2007, 36:451-477.
    • (2007) Annu. Rev. Biophys. Biomol. Struct. , vol.36 , pp. 451-477
    • Pollard, T.D.1
  • 11
    • 0033587188 scopus 로고    scopus 로고
    • The Wiskott-Aldrich syndrome protein directs actin-based motility by stimulating actin nucleation with the Arp2/3 complex
    • Yarar D., et al. The Wiskott-Aldrich syndrome protein directs actin-based motility by stimulating actin nucleation with the Arp2/3 complex. Curr. Biol. 1999, 9:555-558.
    • (1999) Curr. Biol. , vol.9 , pp. 555-558
    • Yarar, D.1
  • 12
    • 0033258036 scopus 로고    scopus 로고
    • Cooperative symmetry-breaking by actin polymerization in a model for cell motility
    • Oudenaarden A.V., Theriot J.A. Cooperative symmetry-breaking by actin polymerization in a model for cell motility. Nat. Cell Biol. 1999, 1:493-499.
    • (1999) Nat. Cell Biol. , vol.1 , pp. 493-499
    • Oudenaarden, A.V.1    Theriot, J.A.2
  • 13
    • 20344394919 scopus 로고    scopus 로고
    • Stress release drives symmetry breaking for actin-based movement
    • van der Gucht J., et al. Stress release drives symmetry breaking for actin-based movement. Proc. Natl. Acad. Sci. U.S.A. 2005, 102:7847-7852.
    • (2005) Proc. Natl. Acad. Sci. U.S.A. , vol.102 , pp. 7847-7852
    • van der Gucht, J.1
  • 14
    • 23244442444 scopus 로고    scopus 로고
    • Mechanism of actin-based motility: a dynamic state diagram
    • Bernheim-Groswasser A., et al. Mechanism of actin-based motility: a dynamic state diagram. Biophys. J. 2005, 89:1411-1419.
    • (2005) Biophys. J. , vol.89 , pp. 1411-1419
    • Bernheim-Groswasser, A.1
  • 15
    • 77649187115 scopus 로고    scopus 로고
    • A "primer" -based mechanism underlies branched actin filament network formation and motility
    • Achard V., et al. A "primer" -based mechanism underlies branched actin filament network formation and motility. Curr. Biol. 2010, 20:423-428.
    • (2010) Curr. Biol. , vol.20 , pp. 423-428
    • Achard, V.1
  • 16
    • 0034091821 scopus 로고    scopus 로고
    • Growing an actin gel on spherical surfaces
    • Noireaux V., et al. Growing an actin gel on spherical surfaces. Biophys. J. 2000, 78:1643-1654.
    • (2000) Biophys. J. , vol.78 , pp. 1643-1654
    • Noireaux, V.1
  • 17
    • 0037118025 scopus 로고    scopus 로고
    • The dynamics of actin-based motility depend on surface parameters
    • Bernheim-Groswasser A., et al. The dynamics of actin-based motility depend on surface parameters. Nature 2002, 417:308-311.
    • (2002) Nature , vol.417 , pp. 308-311
    • Bernheim-Groswasser, A.1
  • 18
    • 84863174604 scopus 로고    scopus 로고
    • Choosing orientation: influence of cargo geometry and ActA polarization on actin comet tails
    • Lacayo C.I., et al. Choosing orientation: influence of cargo geometry and ActA polarization on actin comet tails. Mol. Biol. Cell 2012, 23:614-629.
    • (2012) Mol. Biol. Cell , vol.23 , pp. 614-629
    • Lacayo, C.I.1
  • 19
    • 34248173036 scopus 로고    scopus 로고
    • Actin-filament stochastic dynamics mediated by ADF/cofilin
    • Michelot A., et al. Actin-filament stochastic dynamics mediated by ADF/cofilin. Curr. Biol. 2007, 17:825-833.
    • (2007) Curr. Biol. , vol.17 , pp. 825-833
    • Michelot, A.1
  • 20
    • 84255190188 scopus 로고    scopus 로고
    • Self-organized patterns of actin filaments in cell-sized confinement
    • Soares e Silva M., et al. Self-organized patterns of actin filaments in cell-sized confinement. Soft Matter 2011, 7:10631.
    • (2011) Soft Matter , vol.7 , pp. 10631
    • Soares e Silva, M.1
  • 21
    • 84859733273 scopus 로고    scopus 로고
    • Self-organization of motor-propelled cytoskeletal filaments at topographically defined borders
    • Månsson A., et al. Self-organization of motor-propelled cytoskeletal filaments at topographically defined borders. J. Biomed. Biotechnol. 2012, 2012:647265.
    • (2012) J. Biomed. Biotechnol. , vol.2012 , pp. 647265
    • Månsson, A.1
  • 22
    • 53349103838 scopus 로고    scopus 로고
    • Membrane-induced bundling of actin filaments
    • Liu A.P., et al. Membrane-induced bundling of actin filaments. Nat. Phys. 2008, 4:789-793.
    • (2008) Nat. Phys. , vol.4 , pp. 789-793
    • Liu, A.P.1
  • 23
    • 0042331015 scopus 로고    scopus 로고
    • Freely suspended actin cortex models on arrays of microfabricated pillars
    • Roos W.H., et al. Freely suspended actin cortex models on arrays of microfabricated pillars. Chemphyschem 2003, 4:872-877.
    • (2003) Chemphyschem , vol.4 , pp. 872-877
    • Roos, W.H.1
  • 24
    • 60649110894 scopus 로고    scopus 로고
    • Optical force sensor array in a microfluidic device based on holographic optical tweezers
    • Uhrig K., et al. Optical force sensor array in a microfluidic device based on holographic optical tweezers. Lab Chip 2009, 9:661-668.
    • (2009) Lab Chip , vol.9 , pp. 661-668
    • Uhrig, K.1
  • 25
    • 77957155042 scopus 로고    scopus 로고
    • Nucleation geometry governs ordered actin networks structures
    • Reymann A-C., et al. Nucleation geometry governs ordered actin networks structures. Nat. Mater. 2010, 9:827-832.
    • (2010) Nat. Mater. , vol.9 , pp. 827-832
    • Reymann, A.-C.1
  • 26
    • 84863959196 scopus 로고    scopus 로고
    • Confinement induces actin flow in a meiotic cytoplasm
    • Pinot M., et al. Confinement induces actin flow in a meiotic cytoplasm. Proc. Natl. Acad. Sci. U.S.A. 2012, 109:11705-11710.
    • (2012) Proc. Natl. Acad. Sci. U.S.A. , vol.109 , pp. 11705-11710
    • Pinot, M.1
  • 27
    • 84861965253 scopus 로고    scopus 로고
    • Actin network architecture can determine myosin motor activity
    • Reymann A-C., et al. Actin network architecture can determine myosin motor activity. Science 2012, 336:1310-1314.
    • (2012) Science , vol.336 , pp. 1310-1314
    • Reymann, A.-C.1
  • 28
    • 79960299436 scopus 로고    scopus 로고
    • Reconstitution of contractile actomyosin bundles
    • Thoresen T., et al. Reconstitution of contractile actomyosin bundles. Biophys. J. 2011, 100:2698-2705.
    • (2011) Biophys. J. , vol.100 , pp. 2698-2705
    • Thoresen, T.1
  • 29
    • 0015829161 scopus 로고
    • Chemistry of the filaments and tubules of brain
    • Shelanski M.L. Chemistry of the filaments and tubules of brain. J. Histochem. Cytochem. 1973, 21:529-539.
    • (1973) J. Histochem. Cytochem. , vol.21 , pp. 529-539
    • Shelanski, M.L.1
  • 30
    • 0030973208 scopus 로고    scopus 로고
    • Assembly and positioning of microtubule asters in microfabricated chambers
    • Holy T.E., et al. Assembly and positioning of microtubule asters in microfabricated chambers. Proc. Natl. Acad. Sci. U.S.A. 1997, 94:6228-6231.
    • (1997) Proc. Natl. Acad. Sci. U.S.A. , vol.94 , pp. 6228-6231
    • Holy, T.E.1
  • 31
    • 84856753159 scopus 로고    scopus 로고
    • Cortical dynein controls microtubule dynamics to generate pulling forces that position microtubule asters
    • Laan L., et al. Cortical dynein controls microtubule dynamics to generate pulling forces that position microtubule asters. Cell 2012, 148:502-514.
    • (2012) Cell , vol.148 , pp. 502-514
    • Laan, L.1
  • 32
    • 0037813094 scopus 로고    scopus 로고
    • Self-organization of microtubules and motors
    • Nedelec F., et al. Self-organization of microtubules and motors. Nature 1997, 389:305-308.
    • (1997) Nature , vol.389 , pp. 305-308
    • Nedelec, F.1
  • 33
    • 67349200275 scopus 로고    scopus 로고
    • Effects of confinement on the self-organization of microtubules and motors
    • Pinot M., et al. Effects of confinement on the self-organization of microtubules and motors. Curr. Biol. 2009, 19:954-960.
    • (2009) Curr. Biol. , vol.19 , pp. 954-960
    • Pinot, M.1
  • 34
    • 33846839169 scopus 로고    scopus 로고
    • Microtubule organization in three-dimensional confined geometries: evaluating the role of elasticity through a combined in vitro and modeling approach
    • Cosentino Lagomarsino M., et al. Microtubule organization in three-dimensional confined geometries: evaluating the role of elasticity through a combined in vitro and modeling approach. Biophys. J. 2007, 92:1046-1057.
    • (2007) Biophys. J. , vol.92 , pp. 1046-1057
    • Cosentino Lagomarsino, M.1
  • 35
    • 0000579527 scopus 로고    scopus 로고
    • Vesicle deformation by microtubules: a phase diagram
    • Emsellem V., et al. Vesicle deformation by microtubules: a phase diagram. Phys. Rev. E 1998, 58:4807-4810.
    • (1998) Phys. Rev. E , vol.58 , pp. 4807-4810
    • Emsellem, V.1
  • 36
    • 0031372605 scopus 로고    scopus 로고
    • Mechanics of microtubule-based membrane extension
    • Fygenson D., et al. Mechanics of microtubule-based membrane extension. Phys. Rev. Lett. 1997, 79:4497-4500.
    • (1997) Phys. Rev. Lett. , vol.79 , pp. 4497-4500
    • Fygenson, D.1
  • 37
    • 0035913964 scopus 로고    scopus 로고
    • The mitotic spindle: a self-made machine
    • Karsenti E., Vernos I. The mitotic spindle: a self-made machine. Science 2001, 294:543-547.
    • (2001) Science , vol.294 , pp. 543-547
    • Karsenti, E.1    Vernos, I.2
  • 38
    • 0029836330 scopus 로고    scopus 로고
    • Self-organization of microtubules into bipolar spindles around artificial chromosomes in Xenopus egg extracts
    • Heald R., et al. Self-organization of microtubules into bipolar spindles around artificial chromosomes in Xenopus egg extracts. Nature 1996, 382:420-425.
    • (1996) Nature , vol.382 , pp. 420-425
    • Heald, R.1
  • 39
    • 84855165568 scopus 로고    scopus 로고
    • Mitotic spindle assembly around RCC1-coated beads in Xenopus egg extracts
    • Halpin D., et al. Mitotic spindle assembly around RCC1-coated beads in Xenopus egg extracts. PLoS Biol. 2011, 9:e1001225.
    • (2011) PLoS Biol. , vol.9
    • Halpin, D.1
  • 40
    • 33748210111 scopus 로고    scopus 로고
    • Examining how the spatial organization of chromatin signals influences metaphase spindle assembly
    • Gaetz J., et al. Examining how the spatial organization of chromatin signals influences metaphase spindle assembly. Nat. Cell Biol. 2006, 8:924-932.
    • (2006) Nat. Cell Biol. , vol.8 , pp. 924-932
    • Gaetz, J.1
  • 41
    • 68049114778 scopus 로고    scopus 로고
    • Chromatin shapes the mitotic spindle
    • Dinarina A., et al. Chromatin shapes the mitotic spindle. Cell 2009, 138:502-513.
    • (2009) Cell , vol.138 , pp. 502-513
    • Dinarina, A.1
  • 42
    • 0024444322 scopus 로고
    • The cortical microfilament system of lymphoblasts displays a periodic oscillatory activity in the absence of microtubules: implications for cell polarity
    • Bornens M., et al. The cortical microfilament system of lymphoblasts displays a periodic oscillatory activity in the absence of microtubules: implications for cell polarity. J. Cell Biol. 1989, 109:1071-1083.
    • (1989) J. Cell Biol. , vol.109 , pp. 1071-1083
    • Bornens, M.1
  • 43
    • 0025988325 scopus 로고
    • The cortical actomyosin system of cytochalasin D-treated lymphoblasts
    • Bailly E., et al. The cortical actomyosin system of cytochalasin D-treated lymphoblasts. Exp. Cell Res. 1991, 196:287-293.
    • (1991) Exp. Cell Res. , vol.196 , pp. 287-293
    • Bailly, E.1
  • 44
    • 23244458089 scopus 로고    scopus 로고
    • Cortical actomyosin breakage triggers shape oscillations in cells and cell fragments
    • Paluch E., et al. Cortical actomyosin breakage triggers shape oscillations in cells and cell fragments. Biophys. J. 2005, 89:724-733.
    • (2005) Biophys. J. , vol.89 , pp. 724-733
    • Paluch, E.1
  • 45
    • 34147098381 scopus 로고    scopus 로고
    • Cell spreading and focal adhesion dynamics are regulated by spacing of integrin ligands
    • Cavalcanti-Adam E.A., et al. Cell spreading and focal adhesion dynamics are regulated by spacing of integrin ligands. Biophys. J. 2007, 92:2964-2974.
    • (2007) Biophys. J. , vol.92 , pp. 2964-2974
    • Cavalcanti-Adam, E.A.1
  • 46
    • 79952580461 scopus 로고    scopus 로고
    • Nanolithographic control of the spatial organization of cellular adhesion receptors at the single-molecule level
    • Schvartzman M., et al. Nanolithographic control of the spatial organization of cellular adhesion receptors at the single-molecule level. Nano Lett. 2011, 11:1306-1312.
    • (2011) Nano Lett. , vol.11 , pp. 1306-1312
    • Schvartzman, M.1
  • 47
    • 84862867904 scopus 로고    scopus 로고
    • Reprogramming cell shape with laser nano-patterning
    • Vignaud T., et al. Reprogramming cell shape with laser nano-patterning. J. Cell Sci. 2012, 125:2134-2140.
    • (2012) J. Cell Sci. , vol.125 , pp. 2134-2140
    • Vignaud, T.1
  • 48
    • 0347287090 scopus 로고    scopus 로고
    • Cell behaviour on micropatterned substrata: limits of extracellular matrix geometry for spreading and adhesion
    • Lehnert D., et al. Cell behaviour on micropatterned substrata: limits of extracellular matrix geometry for spreading and adhesion. J. Cell Sci. 2004, 117:41-52.
    • (2004) J. Cell Sci. , vol.117 , pp. 41-52
    • Lehnert, D.1
  • 49
    • 77957104784 scopus 로고    scopus 로고
    • Single cells spreading on a protein lattice adopt an energy minimizing shape
    • Vianay B., et al. Single cells spreading on a protein lattice adopt an energy minimizing shape. Phys. Rev. Lett. 2010, 105:3-6.
    • (2010) Phys. Rev. Lett. , vol.105 , pp. 3-6
    • Vianay, B.1
  • 50
    • 0035211054 scopus 로고    scopus 로고
    • Cytoskeletal control of fibroblast length: experiments with linear strips of substrate
    • Levina E.M., et al. Cytoskeletal control of fibroblast length: experiments with linear strips of substrate. J. Cell Sci. 2001, 114:4335-4341.
    • (2001) J. Cell Sci. , vol.114 , pp. 4335-4341
    • Levina, E.M.1
  • 51
    • 78649952854 scopus 로고    scopus 로고
    • A polarised population of dynamic microtubules mediates homeostatic length control in animal cells
    • Picone R., et al. A polarised population of dynamic microtubules mediates homeostatic length control in animal cells. PLoS Biol. 2010, 8:e1000542.
    • (2010) PLoS Biol. , vol.8
    • Picone, R.1
  • 52
    • 44149085125 scopus 로고    scopus 로고
    • Endothelial cell cytoskeletal alignment independent of fluid shear stress on micropatterned surfaces
    • Vartanian K.B., et al. Endothelial cell cytoskeletal alignment independent of fluid shear stress on micropatterned surfaces. Biochem. Biophys. Res. Commun. 2008, 371:787-792.
    • (2008) Biochem. Biophys. Res. Commun. , vol.371 , pp. 787-792
    • Vartanian, K.B.1
  • 53
    • 56349090118 scopus 로고    scopus 로고
    • Physical mechanisms redirecting cell polarity and cell shape in fission yeast
    • Terenna C.R., et al. Physical mechanisms redirecting cell polarity and cell shape in fission yeast. Curr. Biol. 2008, 18:1748-1753.
    • (2008) Curr. Biol. , vol.18 , pp. 1748-1753
    • Terenna, C.R.1
  • 54
    • 84871059650 scopus 로고    scopus 로고
    • Cell mechanics control rapid transitions between blebs and lamellipodia during migration
    • Bergert M., et al. Cell mechanics control rapid transitions between blebs and lamellipodia during migration. Proc. Natl. Acad. Sci. U.S.A. 2012, 666:1-7.
    • (2012) Proc. Natl. Acad. Sci. U.S.A. , vol.666 , pp. 1-7
    • Bergert, M.1
  • 55
    • 54549087266 scopus 로고    scopus 로고
    • Subcellular curvature at the perimeter of micropatterned cells influences lamellipodial distribution and cell polarity
    • James J., et al. Subcellular curvature at the perimeter of micropatterned cells influences lamellipodial distribution and cell polarity. Cell Motil. Cytoskeleton 2008, 65:841-852.
    • (2008) Cell Motil. Cytoskeleton , vol.65 , pp. 841-852
    • James, J.1
  • 56
    • 0036325856 scopus 로고    scopus 로고
    • Directional control of lamellipodia extension by constraining cell shape and orienting cell tractional forces
    • Parker K.K., et al. Directional control of lamellipodia extension by constraining cell shape and orienting cell tractional forces. FASEB J. 2002, 16:1195-1204.
    • (2002) FASEB J. , vol.16 , pp. 1195-1204
    • Parker, K.K.1
  • 57
    • 0037418473 scopus 로고    scopus 로고
    • Geometric determinants of directional cell motility revealed using microcontact printing
    • Brock A., et al. Geometric determinants of directional cell motility revealed using microcontact printing. Langmuir 2003, 19:1611-1617.
    • (2003) Langmuir , vol.19 , pp. 1611-1617
    • Brock, A.1
  • 58
    • 77949568954 scopus 로고    scopus 로고
    • Force generated by actomyosin contraction builds bridges between adhesive contacts
    • Rossier O.M., et al. Force generated by actomyosin contraction builds bridges between adhesive contacts. EMBO J. 2010, 29:1055-1068.
    • (2010) EMBO J. , vol.29 , pp. 1055-1068
    • Rossier, O.M.1
  • 59
    • 0037452695 scopus 로고    scopus 로고
    • Cells lying on a bed of microneedles: an approach to isolate mechanical force
    • Tan J.L., et al. Cells lying on a bed of microneedles: an approach to isolate mechanical force. Proc. Natl. Acad. Sci. U.S.A. 2003, 100:1484-1489.
    • (2003) Proc. Natl. Acad. Sci. U.S.A. , vol.100 , pp. 1484-1489
    • Tan, J.L.1
  • 60
    • 78651419444 scopus 로고    scopus 로고
    • The regulation of traction force in relation to cell shape and focal adhesions
    • Rape A.D., et al. The regulation of traction force in relation to cell shape and focal adhesions. Biomaterials 2011, 32:2043-2051.
    • (2011) Biomaterials , vol.32 , pp. 2043-2051
    • Rape, A.D.1
  • 61
    • 77950427004 scopus 로고    scopus 로고
    • Geometric cues for directing the differentiation of mesenchymal stem cells
    • Kilian K., et al. Geometric cues for directing the differentiation of mesenchymal stem cells. Proc. Natl. Acad. Sci. U.S.A. 2010, 107:4872-4877.
    • (2010) Proc. Natl. Acad. Sci. U.S.A. , vol.107 , pp. 4872-4877
    • Kilian, K.1
  • 62
    • 6044235528 scopus 로고    scopus 로고
    • Mechanical anisotropy of adherent cells probed by a 3D magnetic twisting device
    • C1884-C1191
    • Hu S., et al. Mechanical anisotropy of adherent cells probed by a 3D magnetic twisting device. Am. J. Physiol. Cell Physiol. 2004, 287. C1884-C1191.
    • (2004) Am. J. Physiol. Cell Physiol. , vol.287
    • Hu, S.1
  • 63
    • 73149105940 scopus 로고    scopus 로고
    • A perinuclear actin cap regulates nuclear shape
    • Khatau S.B., et al. A perinuclear actin cap regulates nuclear shape. Proc. Natl. Acad. Sci. U.S.A. 2009, 106:19017-19022.
    • (2009) Proc. Natl. Acad. Sci. U.S.A. , vol.106 , pp. 19017-19022
    • Khatau, S.B.1
  • 64
    • 49149106635 scopus 로고    scopus 로고
    • Sarcomere alignment is regulated by myocyte shape
    • Bray M-A., et al. Sarcomere alignment is regulated by myocyte shape. Cell Motil. Cytoskeleton 2008, 651:641-651.
    • (2008) Cell Motil. Cytoskeleton , vol.651 , pp. 641-651
    • Bray, M.-A.1
  • 65
    • 84855906761 scopus 로고    scopus 로고
    • Effects of micropatterned curvature on the motility and mechanical properties of airway smooth muscle cells
    • Xu J., et al. Effects of micropatterned curvature on the motility and mechanical properties of airway smooth muscle cells. Biochem. Biophys. Res. Commun. 2011, 415:591-596.
    • (2011) Biochem. Biophys. Res. Commun. , vol.415 , pp. 591-596
    • Xu, J.1
  • 66
    • 33646861953 scopus 로고    scopus 로고
    • Cell distribution of stress fibres in response to the geometry of the adhesive environment
    • Théry M., et al. Cell distribution of stress fibres in response to the geometry of the adhesive environment. Cell Motil. Cytoskeleton 2006, 63:341-355.
    • (2006) Cell Motil. Cytoskeleton , vol.63 , pp. 341-355
    • Théry, M.1
  • 67
    • 79958791174 scopus 로고    scopus 로고
    • A new micropatterning method of soft substrates reveals that different tumorigenic signals can promote or reduce cell contraction levels
    • Tseng Q., et al. A new micropatterning method of soft substrates reveals that different tumorigenic signals can promote or reduce cell contraction levels. Lab Chip 2011, 11:2231-2240.
    • (2011) Lab Chip , vol.11 , pp. 2231-2240
    • Tseng, Q.1
  • 68
    • 55949123735 scopus 로고    scopus 로고
    • Filamentous network mechanics and active contractility determine cell and tissue shape
    • Bischofs I.B., et al. Filamentous network mechanics and active contractility determine cell and tissue shape. Biophys. J. 2008, 95:3488-3496.
    • (2008) Biophys. J. , vol.95 , pp. 3488-3496
    • Bischofs, I.B.1
  • 69
    • 33845934738 scopus 로고    scopus 로고
    • Anisotropy of cell adhesive microenvironment governs cell internal organization and orientation of polarity
    • Théry M., et al. Anisotropy of cell adhesive microenvironment governs cell internal organization and orientation of polarity. Proc. Natl. Acad. Sci. U.S.A. 2006, 103:19771-19776.
    • (2006) Proc. Natl. Acad. Sci. U.S.A. , vol.103 , pp. 19771-19776
    • Théry, M.1
  • 70
    • 84055200331 scopus 로고    scopus 로고
    • Effects of dynein on microtubule mechanics and centrosome positioning
    • Wu J., et al. Effects of dynein on microtubule mechanics and centrosome positioning. Mol. Biol. Cell 2011, 22:4834-4841.
    • (2011) Mol. Biol. Cell , vol.22 , pp. 4834-4841
    • Wu, J.1
  • 71
    • 84863125607 scopus 로고    scopus 로고
    • SMRT analysis of MTOC and nuclear positioning reveals the role of EB1 and LIC1 in single-cell polarization
    • Hale C.M., et al. SMRT analysis of MTOC and nuclear positioning reveals the role of EB1 and LIC1 in single-cell polarization. J. Cell Sci. 2011, 124:4267-4285.
    • (2011) J. Cell Sci. , vol.124 , pp. 4267-4285
    • Hale, C.M.1
  • 72
    • 78649739300 scopus 로고    scopus 로고
    • Finding the cell center by a balance of dynein and myosin pulling and microtubule pushing: a computational study
    • Zhu J., et al. finding the cell center by a balance of dynein and myosin pulling and microtubule pushing: a computational study. Mol. Biol. Cell 2010, 21:4418-4427.
    • (2010) Mol. Biol. Cell , vol.21 , pp. 4418-4427
    • Zhu, J.1
  • 73
    • 66349121353 scopus 로고    scopus 로고
    • Classical cadherins control nucleus and centrosome position and cell polarity
    • Dupin I., et al. Classical cadherins control nucleus and centrosome position and cell polarity. J. Cell Biol. 2009, 185:779-786.
    • (2009) J. Cell Biol. , vol.185 , pp. 779-786
    • Dupin, I.1
  • 74
    • 84861213963 scopus 로고    scopus 로고
    • N-cadherin expression level modulates integrin-mediated polarity and strongly impacts on the speed and directionality of glial cell migration
    • Camand E., et al. N-cadherin expression level modulates integrin-mediated polarity and strongly impacts on the speed and directionality of glial cell migration. J. Cell Sci. 2012, 125:844-857.
    • (2012) J. Cell Sci. , vol.125 , pp. 844-857
    • Camand, E.1
  • 75
    • 79960685238 scopus 로고    scopus 로고
    • The interaction between nesprins and sun proteins at the nuclear envelope is critical for force transmission between the nucleus and cytoskeleton
    • Lombardi M.L., et al. The interaction between nesprins and sun proteins at the nuclear envelope is critical for force transmission between the nucleus and cytoskeleton. J. Biol. Chem. 2011, 286:26743-26753.
    • (2011) J. Biol. Chem. , vol.286 , pp. 26743-26753
    • Lombardi, M.L.1
  • 76
    • 77958495473 scopus 로고    scopus 로고
    • Cell shape and contractility regulate ciliogenesis in cell cycle-arrested cells
    • Pitaval A., et al. Cell shape and contractility regulate ciliogenesis in cell cycle-arrested cells. J. Cell Biol. 2010, 191:303-312.
    • (2010) J. Cell Biol. , vol.191 , pp. 303-312
    • Pitaval, A.1
  • 77
    • 68749083308 scopus 로고    scopus 로고
    • Directing cell motions on micropatterned ratchets
    • Mahmud G., et al. Directing cell motions on micropatterned ratchets. Nat. Phys. 2009, 5:606-612.
    • (2009) Nat. Phys. , vol.5 , pp. 606-612
    • Mahmud, G.1
  • 78
    • 84857820961 scopus 로고    scopus 로고
    • Modular design of micropattern geometry achieves combinatorial enhancements in cell motility
    • Kushiro K., et al. Modular design of micropattern geometry achieves combinatorial enhancements in cell motility. Langmuir 2012, 28:4357-4362.
    • (2012) Langmuir , vol.28 , pp. 4357-4362
    • Kushiro, K.1
  • 79
    • 84856005771 scopus 로고    scopus 로고
    • A biological breadboard platform for cell adhesion and detachment studies
    • Yoon S-H., et al. A biological breadboard platform for cell adhesion and detachment studies. Lab Chip 2011, 11:3555-3562.
    • (2011) Lab Chip , vol.11 , pp. 3555-3562
    • Yoon, S.-H.1
  • 80
    • 35649004939 scopus 로고    scopus 로고
    • Locomotion of fish epidermal keratocytes on spatially selective adhesion patterns
    • Csucs G., et al. Locomotion of fish epidermal keratocytes on spatially selective adhesion patterns. Cell Motil. Cytoskeleton 2007, 64:856-867.
    • (2007) Cell Motil. Cytoskeleton , vol.64 , pp. 856-867
    • Csucs, G.1
  • 81
    • 61449181308 scopus 로고    scopus 로고
    • One-dimensional topography underlies three-dimensional fibrillar cell migration
    • Doyle A.D., et al. One-dimensional topography underlies three-dimensional fibrillar cell migration. J. Cell Biol. 2009, 184:481-490.
    • (2009) J. Cell Biol. , vol.184 , pp. 481-490
    • Doyle, A.D.1
  • 82
    • 49649124182 scopus 로고    scopus 로고
    • In migrating cells, the Golgi complex and the position of the centrosome depend on geometrical constraints of the substratum
    • Pouthas F., et al. In migrating cells, the Golgi complex and the position of the centrosome depend on geometrical constraints of the substratum. J. Cell Sci. 2008, 121:2406-2414.
    • (2008) J. Cell Sci. , vol.121 , pp. 2406-2414
    • Pouthas, F.1
  • 83
    • 84866178680 scopus 로고    scopus 로고
    • The world first cell race
    • Maiuri P., et al. The world first cell race. Curr. Biol. 2012, 22:R673-R675.
    • (2012) Curr. Biol. , vol.22
    • Maiuri, P.1
  • 84
    • 34249287989 scopus 로고    scopus 로고
    • Experimental and theoretical study of mitotic spindle orientation
    • Théry M., et al. Experimental and theoretical study of mitotic spindle orientation. Nature 2007, 447:493-496.
    • (2007) Nature , vol.447 , pp. 493-496
    • Théry, M.1
  • 85
    • 79959955749 scopus 로고    scopus 로고
    • External forces control mitotic spindle positioning
    • Fink J., et al. External forces control mitotic spindle positioning. Nat. Cell Biol. 2011, 13:771-778.
    • (2011) Nat. Cell Biol. , vol.13 , pp. 771-778
    • Fink, J.1
  • 86
    • 80052495937 scopus 로고    scopus 로고
    • MAP4 and CLASP1 operate as a safety mechanism to maintain a stable spindle position in mitosis
    • Samora C.P., et al. MAP4 and CLASP1 operate as a safety mechanism to maintain a stable spindle position in mitosis. Nat. Cell Biol. 2011, 13:1040-1050.
    • (2011) Nat. Cell Biol. , vol.13 , pp. 1040-1050
    • Samora, C.P.1
  • 87
    • 84857788913 scopus 로고    scopus 로고
    • Chromosome- and spindle-pole-derived signals generate an intrinsic code for spindle position and orientation
    • Kiyomitsu T., Cheeseman I.M. Chromosome- and spindle-pole-derived signals generate an intrinsic code for spindle position and orientation. Nat. Cell Biol. 2012, 14:311-317.
    • (2012) Nat. Cell Biol. , vol.14 , pp. 311-317
    • Kiyomitsu, T.1    Cheeseman, I.M.2
  • 88
    • 79551679528 scopus 로고    scopus 로고
    • Influence of cell geometry on division-plane positioning
    • Minc N., et al. Influence of cell geometry on division-plane positioning. Cell 2011, 144:414-426.
    • (2011) Cell , vol.144 , pp. 414-426
    • Minc, N.1
  • 89
    • 84859266215 scopus 로고    scopus 로고
    • Predicting division plane position and orientation
    • Minc N., Piel M. Predicting division plane position and orientation. Trends Cell Biol. 2012, 22:193-200.
    • (2012) Trends Cell Biol. , vol.22 , pp. 193-200
    • Minc, N.1    Piel, M.2
  • 90
    • 23044463089 scopus 로고    scopus 로고
    • Symmetry-breaking in mammalian cell cohort migration during tissue pattern formation: role of random-walk persistence
    • Huang S., et al. Symmetry-breaking in mammalian cell cohort migration during tissue pattern formation: role of random-walk persistence. Cell Motil. Cytoskeleton 2005, 61:201-213.
    • (2005) Cell Motil. Cytoskeleton , vol.61 , pp. 201-213
    • Huang, S.1
  • 91
    • 84867833297 scopus 로고    scopus 로고
    • Spatial segregation of cell-cell and cell-matrix adhesions
    • Burute M., Thery M. Spatial segregation of cell-cell and cell-matrix adhesions. Curr. Opin. Cell Biol. 2012, 24:628-636.
    • (2012) Curr. Opin. Cell Biol. , vol.24 , pp. 628-636
    • Burute, M.1    Thery, M.2
  • 92
    • 84857132597 scopus 로고    scopus 로고
    • Spatial organization of the extracellular matrix regulates cell-cell junction positioning
    • Tseng Q., et al. Spatial organization of the extracellular matrix regulates cell-cell junction positioning. Proc. Natl. Acad. Sci. U.S.A. 2012, 109:1506-1511.
    • (2012) Proc. Natl. Acad. Sci. U.S.A. , vol.109 , pp. 1506-1511
    • Tseng, Q.1
  • 93
    • 84862572303 scopus 로고    scopus 로고
    • Cooperative coupling of cell-matrix and cell-cell adhesions in cardiac muscle
    • McCain M.L., et al. Cooperative coupling of cell-matrix and cell-cell adhesions in cardiac muscle. Proc. Natl. Acad. Sci. U.S.A. 2012, 109:9881-9886.
    • (2012) Proc. Natl. Acad. Sci. U.S.A. , vol.109 , pp. 9881-9886
    • McCain, M.L.1
  • 94
    • 84864966601 scopus 로고    scopus 로고
    • Mechanical waves during tissue expansion
    • Serra-Picamal X., et al. Mechanical waves during tissue expansion. Nat. Phys. 2012, 8:628-634.
    • (2012) Nat. Phys. , vol.8 , pp. 628-634
    • Serra-Picamal, X.1
  • 95
    • 79961082570 scopus 로고    scopus 로고
    • Micropatterned mammalian cells exhibit phenotype-specific left-right asymmetry
    • Wan L.Q., et al. Micropatterned mammalian cells exhibit phenotype-specific left-right asymmetry. Proc. Natl. Acad. Sci. U.S.A. 2011, 108:12295-12300.
    • (2011) Proc. Natl. Acad. Sci. U.S.A. , vol.108 , pp. 12295-12300
    • Wan, L.Q.1
  • 96
    • 66349108868 scopus 로고    scopus 로고
    • Cell polarity triggered by cell-cell adhesion via E-cadherin
    • Desai R.A., et al. Cell polarity triggered by cell-cell adhesion via E-cadherin. J. Cell Sci. 2009, 122:905-911.
    • (2009) J. Cell Sci. , vol.122 , pp. 905-911
    • Desai, R.A.1
  • 97
    • 79960289772 scopus 로고    scopus 로고
    • Orientation and polarity in collectively migrating cell structures: statics and dynamics
    • Reffay M., et al. Orientation and polarity in collectively migrating cell structures: statics and dynamics. Biophys. J. 2011, 100:2566-2575.
    • (2011) Biophys. J. , vol.100 , pp. 2566-2575
    • Reffay, M.1
  • 98
    • 77957267234 scopus 로고    scopus 로고
    • Cytoskeletal mechanisms for breaking cellular symmetry
    • Mullins R.D. Cytoskeletal mechanisms for breaking cellular symmetry. Cold Spring Harb. Perspect. Biol. 2010, 2:a003392.
    • (2010) Cold Spring Harb. Perspect. Biol. , vol.2
    • Mullins, R.D.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.