메뉴 건너뛰기




Volumn 7, Issue 11, 2012, Pages

An Integrative Computational Framework Based on a Two-Step Random Forest Algorithm Improves Prediction of Zinc-Binding Sites in Proteins

Author keywords

[No Author keywords available]

Indexed keywords

ASPARTIC ACID; CYSTEINE; GLUTAMIC ACID; HISTIDINE;

EID: 84869115085     PISSN: None     EISSN: 19326203     Source Type: Journal    
DOI: 10.1371/journal.pone.0049716     Document Type: Article
Times cited : (27)

References (59)
  • 1
    • 0011509370 scopus 로고    scopus 로고
    • Structural and Functional Aspects of Metal Sites in Biology
    • Holm RH, Kennepohl P, Solomon EI, (1996) Structural and Functional Aspects of Metal Sites in Biology. Chem Rev 96: 2239-2314.
    • (1996) Chem Rev , vol.96 , pp. 2239-2314
    • Holm, R.H.1    Kennepohl, P.2    Solomon, E.I.3
  • 2
    • 49549085951 scopus 로고    scopus 로고
    • Designed metal-binding sites in biomolecular and bioinorganic interactions
    • Matthews JM, Loughlin FE, Mackay JP, (2008) Designed metal-binding sites in biomolecular and bioinorganic interactions. Curr Opin Struct Biol 18: 484-490.
    • (2008) Curr Opin Struct Biol , vol.18 , pp. 484-490
    • Matthews, J.M.1    Loughlin, F.E.2    Mackay, J.P.3
  • 3
    • 0017411710 scopus 로고
    • The Protein Data Bank: a computer-based archival file for macromolecular structures
    • Bernstein FC, Koetzle TF, Williams GJ, Meyer EF, Brice MD, et al. (1977) The Protein Data Bank: a computer-based archival file for macromolecular structures. J Mol Biol 112: 535-542.
    • (1977) J Mol Biol , vol.112 , pp. 535-542
    • Bernstein, F.C.1    Koetzle, T.F.2    Williams, G.J.3    Meyer, E.F.4    Brice, M.D.5
  • 4
    • 37349120036 scopus 로고    scopus 로고
    • Prediction of transition metal-binding sites from apo protein structures
    • Babor M, Gerzon S, Raveh B, Sobolev V, Edelman M, (2008) Prediction of transition metal-binding sites from apo protein structures. Proteins 70: 208-217.
    • (2008) Proteins , vol.70 , pp. 208-217
    • Babor, M.1    Gerzon, S.2    Raveh, B.3    Sobolev, V.4    Edelman, M.5
  • 5
    • 0026766977 scopus 로고
    • Zinc proteins: enzymes, storage proteins, transcription factors, and replication proteins
    • Coleman JE, (1992) Zinc proteins: enzymes, storage proteins, transcription factors, and replication proteins. Annu Rev Biochem 61: 897-946.
    • (1992) Annu Rev Biochem , vol.61 , pp. 897-946
    • Coleman, J.E.1
  • 6
    • 30744471169 scopus 로고    scopus 로고
    • Counting the zinc-proteins encoded in the human genome
    • Andreini C, Banci L, Bertini I, Rosato A, (2006) Counting the zinc-proteins encoded in the human genome. J Proteome Res 5: 196-201.
    • (2006) J Proteome Res , vol.5 , pp. 196-201
    • Andreini, C.1    Banci, L.2    Bertini, I.3    Rosato, A.4
  • 7
    • 57249116902 scopus 로고    scopus 로고
    • Predicting small ligand binding sites in proteins using backbone structure
    • Bordner AJ, (2008) Predicting small ligand binding sites in proteins using backbone structure. Bioinformatics 24: 2865-2871.
    • (2008) Bioinformatics , vol.24 , pp. 2865-2871
    • Bordner, A.J.1
  • 9
    • 33947407691 scopus 로고    scopus 로고
    • Prediction of the functional class of metal-binding proteins from sequence derived physicochemical properties by support vector machine approach
    • Lin HH, Han LY, Zhang HL, Zheng CJ, Xie B, et al. (2006) Prediction of the functional class of metal-binding proteins from sequence derived physicochemical properties by support vector machine approach. BMC Bioinformatics 7: S13.
    • (2006) BMC Bioinformatics , vol.7
    • Lin, H.H.1    Han, L.Y.2    Zhang, H.L.3    Zheng, C.J.4    Xie, B.5
  • 12
    • 40749148150 scopus 로고    scopus 로고
    • Prediction of zinc-binding sites in proteins from sequence
    • Shu N, Zhou TP, Hovmoller S, (2008) Prediction of zinc-binding sites in proteins from sequence. Bioinformatics 24: 775-782.
    • (2008) Bioinformatics , vol.24 , pp. 775-782
    • Shu, N.1    Zhou, T.P.2    Hovmoller, S.3
  • 13
    • 51749116964 scopus 로고    scopus 로고
    • MetalDetector: a web server for predicting metal-binding sites and disulfide bridges in proteins from sequence
    • Lippi M, Passerini A, Punta M, Rost B, Frasconi P, (2008) MetalDetector: a web server for predicting metal-binding sites and disulfide bridges in proteins from sequence. Bioinformatics 24: 2094-2095.
    • (2008) Bioinformatics , vol.24 , pp. 2094-2095
    • Lippi, M.1    Passerini, A.2    Punta, M.3    Rost, B.4    Frasconi, P.5
  • 14
    • 70350348305 scopus 로고    scopus 로고
    • Metalloproteomes: a bioinformatic approach
    • Andreini C, Bertini I, Rosato A, (2009) Metalloproteomes: a bioinformatic approach. Acc Chem Res 42: 1471-1479.
    • (2009) Acc Chem Res , vol.42 , pp. 1471-1479
    • Andreini, C.1    Bertini, I.2    Rosato, A.3
  • 16
    • 4143055915 scopus 로고    scopus 로고
    • Predicting metal-binding site residues in low-resolution structural models
    • Sodhi JS, Bryson K, McGuffin LJ, Ward JJ, Wernisch L, et al. (2004) Predicting metal-binding site residues in low-resolution structural models. J Mol Biol 342: 307-320.
    • (2004) J Mol Biol , vol.342 , pp. 307-320
    • Sodhi, J.S.1    Bryson, K.2    McGuffin, L.J.3    Ward, J.J.4    Wernisch, L.5
  • 17
    • 22544450150 scopus 로고    scopus 로고
    • Prediction of water and metal binding sites and their affinities by using the Fold-X force field
    • Schymkowitz JWH, Rousseau F, Martins IC, Stricher F, Serrano L, et al. (2005) Prediction of water and metal binding sites and their affinities by using the Fold-X force field. Proc Natl Acad Sci U S A 102: 10147-10152.
    • (2005) Proc Natl Acad Sci U S A , vol.102 , pp. 10147-10152
    • Schymkowitz, J.W.H.1    Rousseau, F.2    Martins, I.C.3    Stricher, F.4    Serrano, L.5
  • 18
    • 39749099893 scopus 로고    scopus 로고
    • Exploiting 3D structural templates for detection of metal-binding sites in protein structures
    • Goyal K, Mande SC, (2008) Exploiting 3D structural templates for detection of metal-binding sites in protein structures. Proteins-Structure Function and Bioinformatics 70: 1206-1218.
    • (2008) Proteins-Structure Function and Bioinformatics , vol.70 , pp. 1206-1218
    • Goyal, K.1    Mande, S.C.2
  • 19
    • 37549057565 scopus 로고    scopus 로고
    • Robust recognition of zinc binding sites in proteins
    • Ebert JC, Altman RB, (2008) Robust recognition of zinc binding sites in proteins. Protein Science 17: 54-65.
    • (2008) Protein Science , vol.17 , pp. 54-65
    • Ebert, J.C.1    Altman, R.B.2
  • 20
    • 77749314813 scopus 로고    scopus 로고
    • Identification of recurring protein structure microenvironments and discovery of novel functional sites around CYS residues
    • Wu S, Liu T, Altman RB, (2010) Identification of recurring protein structure microenvironments and discovery of novel functional sites around CYS residues. BMC Struct Biol 10: 4.
    • (2010) BMC Struct Biol , vol.10 , pp. 4
    • Wu, S.1    Liu, T.2    Altman, R.B.3
  • 21
    • 79954524893 scopus 로고    scopus 로고
    • Structure-based de novo prediction of zinc-binding sites in proteins of unknown function
    • Zhao W, Xu M, Liang Z, Ding B, Niu LW, et al. (2011) Structure-based de novo prediction of zinc-binding sites in proteins of unknown function. Bioinformatics 27: 1262-1268.
    • (2011) Bioinformatics , vol.27 , pp. 1262-1268
    • Zhao, W.1    Xu, M.2    Liang, Z.3    Ding, B.4    Niu, L.W.5
  • 22
    • 33749036872 scopus 로고    scopus 로고
    • Identifying cysteines and histidines in transition-metal-binding sites using support vector machines and neural networks
    • Passerini A, Punta M, Ceroni A, Rost B, Frasconi P, (2006) Identifying cysteines and histidines in transition-metal-binding sites using support vector machines and neural networks. Proteins-Structure Function and Bioinformatics 65: 305-316.
    • (2006) Proteins-Structure Function and Bioinformatics , vol.65 , pp. 305-316
    • Passerini, A.1    Punta, M.2    Ceroni, A.3    Rost, B.4    Frasconi, P.5
  • 23
    • 0043122933 scopus 로고    scopus 로고
    • UniqueProt: creating representative protein sequence sets
    • Mika S, Rost B, (2003) UniqueProt: creating representative protein sequence sets. Nucleic Acids Research 31: 3789-3791.
    • (2003) Nucleic Acids Research , vol.31 , pp. 3789-3791
    • Mika, S.1    Rost, B.2
  • 25
    • 0027015628 scopus 로고
    • Functional Zinc-Binding Motifs in Enzymes and DNA-Binding Proteins
    • Vallee BL, Auld DS, (1992) Functional Zinc-Binding Motifs in Enzymes and DNA-Binding Proteins. Faraday Discussions 93: 47-65.
    • (1992) Faraday Discussions , vol.93 , pp. 47-65
    • Vallee, B.L.1    Auld, D.S.2
  • 26
    • 0035690880 scopus 로고    scopus 로고
    • Zinc coordination sphere in biochemical zinc sites
    • Auld DS, (2001) Zinc coordination sphere in biochemical zinc sites. Biometals 14: 271-313.
    • (2001) Biometals , vol.14 , pp. 271-313
    • Auld, D.S.1
  • 28
    • 1542358787 scopus 로고    scopus 로고
    • Prediction and functional analysis of native disorder in proteins from the three kingdoms of life
    • Ward JJ, Sodhi JS, McGuffin LJ, Buxton BF, Jones DT, (2004) Prediction and functional analysis of native disorder in proteins from the three kingdoms of life. J Mol Biol 337: 635-645.
    • (2004) J Mol Biol , vol.337 , pp. 635-645
    • Ward, J.J.1    Sodhi, J.S.2    McGuffin, L.J.3    Buxton, B.F.4    Jones, D.T.5
  • 29
    • 5044235541 scopus 로고    scopus 로고
    • Prediction of sequence-dependent and mutational effects on the aggregation of peptides and proteins
    • Fernandez-Escamilla AM, Rousseau F, Schymkowitz J, Serrano L, (2004) Prediction of sequence-dependent and mutational effects on the aggregation of peptides and proteins. Nature Biotechnology 22: 1302-1306.
    • (2004) Nature Biotechnology , vol.22 , pp. 1302-1306
    • Fernandez-Escamilla, A.M.1    Rousseau, F.2    Schymkowitz, J.3    Serrano, L.4
  • 30
    • 36549021546 scopus 로고    scopus 로고
    • Predicting disulfide connectivity from protein sequence using multiple sequence feature vectors and secondary structure
    • Song J, Yuan Z, Tan H, Huber T, Burrage K, (2007) Predicting disulfide connectivity from protein sequence using multiple sequence feature vectors and secondary structure. Bioinformatics 23: 3147-3154.
    • (2007) Bioinformatics , vol.23 , pp. 3147-3154
    • Song, J.1    Yuan, Z.2    Tan, H.3    Huber, T.4    Burrage, K.5
  • 31
    • 77951972791 scopus 로고    scopus 로고
    • Cascleave: towards more accurate prediction of caspase substrate cleavage sites
    • Song J, Tan H, Shen HB, Mahmood K, Boyd SE, et al. (2010) Cascleave: towards more accurate prediction of caspase substrate cleavage sites. Bioinformatics 26: 752-760.
    • (2010) Bioinformatics , vol.26 , pp. 752-760
    • Song, J.1    Tan, H.2    Shen, H.B.3    Mahmood, K.4    Boyd, S.E.5
  • 32
    • 84863073485 scopus 로고    scopus 로고
    • TANGLE: two-level support vector regression approach for protein backbone torsion angle prediction from primary sequences
    • Song J, Tan H, Wang M, Webb GI, Akutsu T, (2012) TANGLE: two-level support vector regression approach for protein backbone torsion angle prediction from primary sequences. PLoS One 7: e30361.
    • (2012) PLoS One , vol.7
    • Song, J.1    Tan, H.2    Wang, M.3    Webb, G.I.4    Akutsu, T.5
  • 33
    • 84865298225 scopus 로고    scopus 로고
    • FunSAV: predicting the functional effect of single amino acid variants using a two-stage random forest model
    • Wang M, Zhao XM, Takemoto K, Xu H, Li Y, et al. (2012) FunSAV: predicting the functional effect of single amino acid variants using a two-stage random forest model. PLoS One pp. e43847.
    • (2012) PLoS One
    • Wang, M.1    Zhao, X.M.2    Takemoto, K.3    Xu, H.4    Li, Y.5
  • 34
    • 0020997912 scopus 로고
    • Dictionary of Protein Secondary Structure - Pattern-Recognition of Hydrogen-Bonded and Geometrical Features
    • Kabsch W, Sander C, (1983) Dictionary of Protein Secondary Structure- Pattern-Recognition of Hydrogen-Bonded and Geometrical Features. Biopolymers 22: 2577-2637.
    • (1983) Biopolymers , vol.22 , pp. 2577-2637
    • Kabsch, W.1    Sander, C.2
  • 35
    • 0028304962 scopus 로고
    • Satisfying Hydrogen-Bonding Potential in Proteins
    • Mcdonald IK, Thornton JM, (1994) Satisfying Hydrogen-Bonding Potential in Proteins. J Mol Biol 238: 777-793.
    • (1994) J Mol Biol , vol.238 , pp. 777-793
    • Mcdonald, I.K.1    Thornton, J.M.2
  • 36
    • 0003742069 scopus 로고
    • Department Biochemistry and Molecular Biology, University College, London
    • Hubbard SJ, Thornton JM (1993) 'NACCESS'. Computer Program: Department Biochemistry and Molecular Biology, University College, London.
    • (1993) 'NACCESS'. Computer Program
    • Hubbard, S.J.1    Thornton, J.M.2
  • 37
    • 79953186069 scopus 로고    scopus 로고
    • Novel feature for catalytic protein residues reflecting interactions with other residues
    • Li Y, Li G, Wen Z, Yin H, Hu M, et al. (2011) Novel feature for catalytic protein residues reflecting interactions with other residues. PLoS One 6: e16932.
    • (2011) PLoS One , vol.6
    • Li, Y.1    Li, G.2    Wen, Z.3    Yin, H.4    Hu, M.5
  • 38
    • 78651230959 scopus 로고    scopus 로고
    • Predicting disease-associated substitution of a single amino acid by analyzing residue interactions
    • Li Y, Wen Z, Xiao J, Yin H, Yu L, et al. (2011) Predicting disease-associated substitution of a single amino acid by analyzing residue interactions. BMC Bioinformatics 12: 14.
    • (2011) BMC Bioinformatics , vol.12 , pp. 14
    • Li, Y.1    Wen, Z.2    Xiao, J.3    Yin, H.4    Yu, L.5
  • 39
    • 71749114914 scopus 로고    scopus 로고
    • Exploiting structural and topological information to improve prediction of RNA-protein binding sites
    • Maetschke SR, Yuan Z, (2009) Exploiting structural and topological information to improve prediction of RNA-protein binding sites. BMC Bioinformatics 10: 341.
    • (2009) BMC Bioinformatics , vol.10 , pp. 341
    • Maetschke, S.R.1    Yuan, Z.2
  • 40
    • 0033565815 scopus 로고    scopus 로고
    • Residue depth: a novel parameter for the analysis of protein structure and stability
    • Chakravarty S, Varadarajan R, (1999) Residue depth: a novel parameter for the analysis of protein structure and stability. Structure 7: 723-732.
    • (1999) Structure , vol.7 , pp. 723-732
    • Chakravarty, S.1    Varadarajan, R.2
  • 41
    • 46249133956 scopus 로고    scopus 로고
    • HSEpred: predict half-sphere exposure from protein sequences
    • Song J, Tan H, Takemoto K, Akutsu T, (2008) HSEpred: predict half-sphere exposure from protein sequences. Bioinformatics 24: 1489-1497.
    • (2008) Bioinformatics , vol.24 , pp. 1489-1497
    • Song, J.1    Tan, H.2    Takemoto, K.3    Akutsu, T.4
  • 42
    • 70349392341 scopus 로고    scopus 로고
    • Prodepth: predict residue depth by support vector regression approach from protein sequences only
    • Song J, Tan H, Mahmood K, Law RH, Buckle AM, et al. (2009) Prodepth: predict residue depth by support vector regression approach from protein sequences only. PLoS One 4: e7072.
    • (2009) PLoS One , vol.4
    • Song, J.1    Tan, H.2    Mahmood, K.3    Law, R.H.4    Buckle, A.M.5
  • 43
    • 14644400399 scopus 로고    scopus 로고
    • An amino acid has two sides: A new 2D measure provides a different view of solvent exposure
    • Hamelryck T, (2005) An amino acid has two sides: A new 2D measure provides a different view of solvent exposure. Proteins 59: 38-48.
    • (2005) Proteins , vol.59 , pp. 38-48
    • Hamelryck, T.1
  • 44
    • 35748932917 scopus 로고    scopus 로고
    • A review of feature selection techniques in bioinformatics
    • Saeys Y, Inza I, Larranaga P, (2007) A review of feature selection techniques in bioinformatics. Bioinformatics 23: 2507-2517.
    • (2007) Bioinformatics , vol.23 , pp. 2507-2517
    • Saeys, Y.1    Inza, I.2    Larranaga, P.3
  • 45
    • 36448960843 scopus 로고    scopus 로고
    • PFRES: protein fold classification by using evolutionary information and predicted secondary structure
    • Chen K, Kurgan L, (2007) PFRES: protein fold classification by using evolutionary information and predicted secondary structure. Bioinformatics 23: 2843-2850.
    • (2007) Bioinformatics , vol.23 , pp. 2843-2850
    • Chen, K.1    Kurgan, L.2
  • 46
    • 53749083563 scopus 로고    scopus 로고
    • Accurate sequence-based prediction of catalytic residues
    • Zhang T, Zhang H, Chen K, Shen S, Ruan J, et al. (2008) Accurate sequence-based prediction of catalytic residues. Bioinformatics 24: 2329-2338.
    • (2008) Bioinformatics , vol.24 , pp. 2329-2338
    • Zhang, T.1    Zhang, H.2    Chen, K.3    Shen, S.4    Ruan, J.5
  • 47
    • 79959461699 scopus 로고    scopus 로고
    • Sequence-based prediction of protein crystallization, purification and production propensity
    • Mizianty MJ, Kurgan L, (2011) Sequence-based prediction of protein crystallization, purification and production propensity. Bioinformatics 27: i24-i33.
    • (2011) Bioinformatics , vol.27
    • Mizianty, M.J.1    Kurgan, L.2
  • 48
    • 80055062088 scopus 로고    scopus 로고
    • Predicting Residue-Residue Contacts and Helix-Helix Interactions in Transmembrane Proteins Using an Integrative Feature-Based Random Forest Approach
    • Wang XF, Chen Z, Wang C, Yan RX, Zhang ZD, et al. (2011) Predicting Residue-Residue Contacts and Helix-Helix Interactions in Transmembrane Proteins Using an Integrative Feature-Based Random Forest Approach. PLoS One 6: e26767.
    • (2011) PLoS One , vol.6
    • Wang, X.F.1    Chen, Z.2    Wang, C.3    Yan, R.X.4    Zhang, Z.D.5
  • 49
    • 77950878660 scopus 로고    scopus 로고
    • Improving the accuracy of predicting disulfide connectivity by feature selection
    • Zhu L, Yang J, Song J, Chou KC, Shen HB, (2010) Improving the accuracy of predicting disulfide connectivity by feature selection. J Comput Chem 31: 1478-1485.
    • (2010) J Comput Chem , vol.31 , pp. 1478-1485
    • Zhu, L.1    Yang, J.2    Song, J.3    Chou, K.C.4    Shen, H.B.5
  • 50
    • 0035478854 scopus 로고    scopus 로고
    • Random forests
    • Breiman L, (2001) Random forests. Machine Learning 45: 5-32.
    • (2001) Machine Learning , vol.45 , pp. 5-32
    • Breiman, L.1
  • 51
    • 0345040873 scopus 로고    scopus 로고
    • Classification and Regression by randomForest
    • Liaw A, Watthew M, (2002) Classification and Regression by randomForest. R news 2: 18-22.
    • (2002) R News , vol.2 , pp. 18-22
    • Liaw, A.1    Watthew, M.2
  • 52
    • 83255194562 scopus 로고    scopus 로고
    • Predicting residue-residue contacts using random forest models
    • Li YQ, Fang YP, Fang JW, (2011) Predicting residue-residue contacts using random forest models. Bioinformatics 27: 3379-3384.
    • (2011) Bioinformatics , vol.27 , pp. 3379-3384
    • Li, Y.Q.1    Fang, Y.P.2    Fang, J.W.3
  • 53
    • 58049220320 scopus 로고    scopus 로고
    • Prediction of DNA-binding residues in proteins from amino acid sequences using a random forest model with a hybrid feature
    • Wu JS, Liu HD, Duan XY, Ding Y, Wu HT, et al. (2009) Prediction of DNA-binding residues in proteins from amino acid sequences using a random forest model with a hybrid feature. Bioinformatics 25: 30-35.
    • (2009) Bioinformatics , vol.25 , pp. 30-35
    • Wu, J.S.1    Liu, H.D.2    Duan, X.Y.3    Ding, Y.4    Wu, H.T.5
  • 54
    • 61449249266 scopus 로고    scopus 로고
    • Sequence-based prediction of protein interaction sites with an integrative method
    • Chen XW, Jeong JC, (2009) Sequence-based prediction of protein interaction sites with an integrative method. Bioinformatics 25: 585-591.
    • (2009) Bioinformatics , vol.25 , pp. 585-591
    • Chen, X.W.1    Jeong, J.C.2
  • 56
    • 79951527638 scopus 로고    scopus 로고
    • DROP: an SVM domain linker predictor trained with optimal features selected by random forest
    • Ebina T, Toh H, Kuroda Y, (2011) DROP: an SVM domain linker predictor trained with optimal features selected by random forest. Bioinformatics 27: 487-494.
    • (2011) Bioinformatics , vol.27 , pp. 487-494
    • Ebina, T.1    Toh, H.2    Kuroda, Y.3
  • 57
    • 34249308113 scopus 로고    scopus 로고
    • How accurate and statistically robust are catalytic site predictions based on closeness centrality
    • Chea E, Livesay DR, (2007) How accurate and statistically robust are catalytic site predictions based on closeness centrality? BMC Bioinformatics 8: 153.
    • (2007) BMC Bioinformatics , vol.8 , pp. 153
    • Chea, E.1    Livesay, D.R.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.